Letters in Mathematical Physics

, Volume 83, Issue 3, pp 237–252 | Cite as

The KT-BRST Complex of a Degenerate Lagrangian System

  • D. Bashkirov
  • G. Giachetta
  • L. Mangiarotti
  • G. Sardanashvily


Quantization of a Lagrangian field system essentially depends on its degeneracy and implies its BRST extension defined by sets of non-trivial Noether and higher-stage Noether identities. However, one meets a problem how to select trivial and non-trivial higher-stage Noether identities. We show that, under certain conditions, one can associate to a degenerate Lagrangian L the KT-BRST complex of fields, antifields and ghosts whose boundary and coboundary operators provide all non-trivial Noether identities and gauge symmetries of L. In this case, L can be extended to a proper solution of the master equation.

Mathematics Subject Classification (2000)

58A20 58C50 70S05 70S20 


degenerate Lagrangian Noether theorem gauge symmetry BRST symmetry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barnich G., Brandt F. and Henneaux M. (2000). Local BRST cohomology in gauge theories. Phys. Rep. 338: 439–569 zbMATHCrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Bashkirov D., Giachetta G., Mangiarotti L. and Sardanashvily G. (2005). Noether’s second theorem in a general setting. Reducible gauge theories. J. Phys. A 38: 5329–5344 zbMATHCrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Bashkirov D., Giachetta G., Mangiarotti L. and Sardanashvily G. (2005). Noether’s second theorem for BRST symmetries. J. Math. Phys. 46: 053517 CrossRefMathSciNetGoogle Scholar
  4. 4.
    Bashkirov D., Giachetta G., Mangiarotti L. and Sardanashvily G. (2005). The antifield Koszul– Tate complex of reducible Noether identities. J. Math. Phys. 46: 103513 CrossRefMathSciNetGoogle Scholar
  5. 5.
    Batalin I. and Vilkovisky G. (1984). Closure of the gauge algebra, generalized Lie algebra equations and Feynman rules. Nucleic Phys. B 234: 106–124 CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Fisch J. and Henneaux M. (1990). Homological perturbation theory and algebraic structure of the antifield-antibracket formalism for gauge theories. Commun. Math. Phys. 128: 627–640 zbMATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Fulp R., Lada T. and Stasheff J. (2003). Noether variational Theorem II and the BV formalism. Rend. Circ. Mat. Palermo 2(Suppl no 71): 115–126 MathSciNetGoogle Scholar
  8. 8.
    Giachetta G., Mangiarotti L. and Sardanashvily G. (2005). Lagrangian supersymmetries depending on derivatives. Global analysis and cohomology. Commun. Math. Phys. 259: 103–128 zbMATHCrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Gomis J., Parí s J. and Samuel S. (1995). Antibracket, antifields and gauge theory quantization. Phys. Rep. 295: 1–145 CrossRefADSGoogle Scholar
  10. 10.
    Mangiarotti L. and Sardanashvily G. (2000). Connections in Classical and Quantum Field Theory. World Scientific, Singapore zbMATHGoogle Scholar
  11. 11.
    Sardanashvily G. (2007). Graded infinite order jet manifolds. Int. J. Geom. Methods Mod. Phys. 4: 1335–1362 CrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • D. Bashkirov
    • 1
  • G. Giachetta
    • 2
  • L. Mangiarotti
    • 2
  • G. Sardanashvily
    • 1
  1. 1.Department of Theoretical PhysicsMoscow State UniversityMoscowRussia
  2. 2.Department of Mathematics and InformaticsUniversity of CamerinoCamerinoItaly

Personalised recommendations