Advertisement

Letters in Mathematical Physics

, Volume 83, Issue 2, pp 139–148 | Cite as

Embeddings of Hyperbolic Kac–Moody Algebras into E 10

  • Sankaran ViswanathEmail author
Article

Abstract

We show that the rank 10 hyperbolic Kac–Moody algebra E 10 contains every simply laced hyperbolic Kac–Moody algebra as a Lie subalgebra. Our method is based on an extension of earlier work of Feingold and Nicolai.

Mathematics Subject Classification (2000)

17B67 

Keywords

hyperbolic Kac–Moody algebra E10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Damour T., Henneaux M. and Nicolai H. (2002). E 10 and a small tension expansion of M theory. Phys. Rev. Lett. 89(22): 221601 CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Damour, T.: Cosmological singularities, billiards and Lorentzian Kac–Moody algebras. In: Deserfest, pp. 55–76. World Scientific Publication, Hackensack (2006)Google Scholar
  3. 3.
    Damour T. and Henneaux M. (2001). E 10, BE 10 and arithmetical chaos in superstring cosmology. Phys. Rev. Lett. 86(21): 4749–4752 CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Damour T. and Nicolai H. (2005). Higher-order M-theory corrections and the Kac-Moody algebra E 10. Class. Quantum Gravity 22(14): 2849–2879 zbMATHCrossRefADSMathSciNetGoogle Scholar
  5. 5.
    de Buyl S. and Schomblond C. (2004). Hyperbolic Kac–Moody algebras and Einstein billiards. J. Math. Phys. 45(12): 4464–4492 zbMATHCrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Dyer M. (1990). Reflection subgroups of Coxeter systems. J. Algebra 135(1): 57–73 zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Feingold A.J. and Frenkel I.B. (1983). A hyperbolic Kac–Moody algebra and the theory of Siegel modular forms of genus 2. Math. Ann. 263(1): 87–144 zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Feingold, A.J., Nicolai, H.: Subalgebras of hyperbolic Kac–Moody algebras. In: Kac–Moody Lie Algebras and Related Topics, Contemp. Math., vol. 343, pp. 97–114. American Mathematical Society, Providence (2004)Google Scholar
  9. 9.
    Kac V.G. (1968). Simple irreducible graded Lie algebras of finite growth. Izv. Akad. Nauk SSSR Ser. Mat. 32: 1323–1367 MathSciNetGoogle Scholar
  10. 10.
    Kac V.G. (1990). Infinite-dimensional Lie algebras, 3rd edn. Cambridge University Press, Cambridge zbMATHGoogle Scholar
  11. 11.
    Kac, V.G., Moody, R.V., Wakimoto, M.: On E 10. In: Differential Geometrical Methods in Theoretical Physics (Como, 1987). NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 250, pp. 109–128. Kluwer Academic Publication, Dordrecht (1988)Google Scholar
  12. 12.
    Kleinschmidt, A., Nicolai, H: E 10 and SO(9, 9) invariant supergravity. J. High Energy Phys. 7, 041 (electronic 2004)Google Scholar
  13. 13.
    Kleinschmidt, A., Nicolai, H: E 10 cosmology. J. High Energy Phys. 1, 137 (electronic 2006)Google Scholar
  14. 14.
    Kleinschmidt A. and Nicolai H (2006). Maximal supergravities and the E 10 coset model. Int. J. Mod. Phys. D 15(10): 1619–1642 zbMATHCrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Moody R.V. (1968). A new class of Lie algebras. J. Algebra 10: 211–230 CrossRefMathSciNetGoogle Scholar
  16. 16.
    Saçlioğlu C. (1989). Dynkin diagrams for hyperbolic Kac–Moody algebras. J. Phys. A 22(18): 3753–3769 CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  1. 1.Department of MathematicsPenn State UniversityUniversity ParkUSA

Personalised recommendations