Letters in Mathematical Physics

, Volume 81, Issue 2, pp 161–175 | Cite as

Non-Commutative Complete Mellin Representation for Feynman Amplitudes

  • Razvan Gurau
  • Adolfo Malbouisson
  • Vincent Rivasseau
  • Adrian Tanasă


We extend the complete Mellin (CM) representation of Feynman amplitudes to the non-commutative quantum field theories. This representation is a versatile tool. It provides a quick proof of meromorphy of Feynman amplitudes in parameters such as the dimension of space–time. In particular it paves the road for the dimensional renormalization of these theories. This complete Mellin representation also allows the study of asymptotic behavior under rescaling of arbitrary subsets of external invariants of any Feynman amplitude.



Mathematics Subject Classification (2000)

81T18 81T75 


Feynman amplitudes Mellin representation Non-commutative field theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdesselam A. (2004). The Grassmann-Berezin calculus and theorems of the matrix-tree type. Adv. Appl. Math. 33: 51–70, arxiv:math.CO/0306396 MATHCrossRefGoogle Scholar
  2. 2.
    Bergère M.C., de Calan C. and Malbouisson A.P.C. (1978). A theorem on asymptotic expansion of Feynman amplitudes. Commun. Math. Phys. 62: 137–158 CrossRefADSGoogle Scholar
  3. 3.
    Bergère M.C. and Lam Y.-M.P. (1974). Asymptotic expansion of Feynman amplitudes Part I The convergent case. Commun. Math. Phys. 39: 1–32 CrossRefADSGoogle Scholar
  4. 4.
    Begère M.C. and Lam Y.-M.P. (1976). Bogolubovâ Parasiuk theorem in the α-parametric representation. J. Math. Phys. 17: 1546–1557 CrossRefADSGoogle Scholar
  5. 5.
    Bergère M.C., Lam Y.-M.P.: preprint, Freie Universität, Berlin, HEP (1979 unpublished)Google Scholar
  6. 6.
    Bergère M.C. and Zuber J.B. (1974). Renormalization of Feynman amplitudes and parametric integral representation. Commun. Math. Phys. 35: 113–140 CrossRefADSGoogle Scholar
  7. 7.
    de Calan C., David F. and Rivasseau V. (1981). Renormalization in the complete Mellin representation of Feynman amplitudes. Commun. Math. Phys. 78: 531–544 CrossRefGoogle Scholar
  8. 8.
    de Calan C. and Malbouisson A.P.C. (1980). Complete Mellin representation and asymptotic behaviours of Feynman amplitudes. Ann. Inst. Henri Poincaré 32: 91–107 Google Scholar
  9. 9.
    de Calan C. and Malbouisson A.P.C. (1983). Infrared and ultraviolet dimensional meromorphy of Feynman amplitudes. Commun. Math. Phys. 90: 413–416 CrossRefADSGoogle Scholar
  10. 10.
    Disertori M., Gurau R., Magnen J., Rivasseau V. Vanishing of beta function of non commutative \(\Phi_{4}^{4}\) to all orders. Phys. Lett. B 649, 95–102, arXiv:hep-th/0612251 (2007)Google Scholar
  11. 11.
    Grosse H. and Wulkenhaar R. (2005). Power-counting theorem for non-local matrix models and renormalization, Commun. Math. Phys. 254: 91–127, arXiv:hep-th/0305066 MATHCrossRefADSGoogle Scholar
  12. 12.
    Grosse, H., Wulkenhaar, R.: Renormalization of \(\phi^{4}\) -theory on noncommutative \({\mathbb{R}}^{2}\) in the matrix base, JHEP 12, 019, arXiv:hep-th/0307017 (2003)Google Scholar
  13. 13.
    Grosse, H., Wulkenhaar, R.: Renormalization of \(\phi^{4}\) -theory on noncommutative \({\mathbb{R}}^{4}\) in the matrix base. Commun. Math. Phys. 256, 305–374, arXiv:hep-th/0401128 (2005)Google Scholar
  14. 14.
    Gurau, R., Magnen, J., Rivasseau, V., Vignes-Tourneret, F.: Renormalization of non-commutative \(\phi^4_4\) field theory in x space. Commun. Math. Phys. 267, 515–542, arXiv:hep-th/0512271 (2006)Google Scholar
  15. 15.
    Gurau, R., Rivasseau, V.: Parametric representation of noncommutative field theory. Commun. Math. Phys, 272, 811–835, arxiv:math-ph/0606030 (2007)Google Scholar
  16. 16.
    Gurau, R., Tanasa, A.: Dimensional regularization and renormalization of non-commutative QFT. (submitted to Ann. Henri Poincaré, arXiv:math-ph/0706.1147)Google Scholar
  17. 17.
    Hepp K. (1966). Proof of the Bogoliubov–Parasiuk theorem on renormalization. Commun. Math. Phys. 2: 301–326 CrossRefADSGoogle Scholar
  18. 18.
    Itzykson C. and Zuber J.B. (1980). Quantum Field Theory. McGraw-Hill, New York Google Scholar
  19. 19.
    Langmann, E., Szabo, R.J.: Duality in scalar field theory on noncommutative phase spaces. Phys. Lett. B533, 168–177, arXiv:hep-th0202039 (2002)Google Scholar
  20. 20.
    Linhares, C.A., Malbouisson, A.P.C., Roditi, I.: Asymptotic expansions of Feynman amplitudes in a generic covariant gauge, arxiv:hep-th/0612010Google Scholar
  21. 21.
    Malbouisson A.P.C. (2000). A convergence theorem for asymptotic expansions of Feynman amplitudes. J. Phys. A: Math. Gen. 33: 3587–3595 MATHCrossRefADSGoogle Scholar
  22. 22.
    Malbouisson A.P.C. (2001). Critical behavior of correlation functions and asymptotic expansions of Feynman amplitudes. In: Janke, W., Pelster, A., Schmidt, H.-J. and Bachmann, M. (eds) Fluctuating Paths and Fields: Festschrift Dedicated to Hagen Kleinert., pp. World Scientific, Singapore Google Scholar
  23. 23.
    Nakanishi N. (1971). Graph Theory and Feynman Integrals. Gordon and Breach, New York MATHGoogle Scholar
  24. 24.
    Rivasseau, V.: Non-commutative Renormalization. Poincaré Seminar 2007, to appear in Quantum Spaces. Birkhaüser Verlag, arXiv:0705.0705Google Scholar
  25. 25.
    Rivasseau, V., Tanasa, A.: Parametric representation of “critical” noncommutative QFT models. (submitted to Commun. Math. Phys., arxiv:math-ph/0701034)Google Scholar
  26. 26.
    Rivasseau, V., Vignes-Tourneret, F.: Renormalization of noncommutative field theories, arxiv:hep-th/0702068Google Scholar
  27. 27.
    Rivasseau, V., Vignes-Tourneret, F., Wulkenhaar, R.: Renormalization of noncommutative \(\phi^4\) -theory by multi-scale analysis. Commun. Math. Phys. 262, 565–594, arXiv: hep-th/0501036 (2006)Google Scholar
  28. 28.
    Vignes-Tourneret, F.: Renormalization of the orientable non-commutative Gross–Neveu model. Ann. H. Poincaré 8, 427–474, arXiv:math-ph/0606069 (2007)Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Razvan Gurau
    • 1
  • Adolfo Malbouisson
    • 2
  • Vincent Rivasseau
    • 1
  • Adrian Tanasă
    • 1
  1. 1.Laboratoire de Physique Théorique CNRS UMR 8627Orsay CedexFrance
  2. 2.Centro Brasileiro de Pesquisas FísicasRio de JaneiroBrazil

Personalised recommendations