Coherent States for Hopf Algebras
Article
First Online:
- 76 Downloads
- 4 Citations
Abstract
Families of Perelomov coherent states are defined axiomatically in the context of unitary representations of Hopf algebras. A global geometric picture involving locally trivial noncommutative fibre bundles is involved in the construction. If, in addition, the Hopf algebra has a left Haar integral, then a formula for noncommutative resolution of identity in terms of the family of coherent states holds. Examples come from quantum groups.
Mathematics Subject Classification (2000)
14A22 16W30 14L30 58B32Keywords
coherent states Hopf algebra comodule algebra Ore localization localized coinvariants line bundle resolution of unityPreview
Unable to display preview. Download preview PDF.
References
- 1.Andrews, G.E., Askey, R., Roy, R.: Special Functions. Enc. Math. Appl, vol. 71 Camb. Univ. Press xvi+664 pp. (Chap. 10: Introduction to q-series) (1999)Google Scholar
- 2.Askey R. (1980). Ramanujan’s extensions of the gamma and beta functions. Am. Math. Mon. 87(5): 346–359 zbMATHCrossRefGoogle Scholar
- 3.Bargmann V. (1961). On a Hilbert space of analytic functions and an associated integral transform I. Commun. Pure Appl. Math. 14: 187–214 zbMATHCrossRefGoogle Scholar
- 4.Berezin F.A. (1974). Quantization. Math. USSR-Izv. 38(5): 1109–1165 CrossRefGoogle Scholar
- 5.Brzeziński T., Majid S. (1993). Quantum group gauge theory on quantum spaces. Commun. Math. Phys. 157(3): 591–638 CrossRefADSGoogle Scholar
- 6.Connes A. (1994). Non-commutative Geometry. Academic, New York Google Scholar
- 7.Delbourgo, R., Zhang, R.B.: Minimal uncertainty states for quantum groups. J. Phys. A 30, L313–L316; arXiv:q-alg/9611021 (1997)Google Scholar
- 8.Drinfel’d, V.G.: Quantum Groups. Proc. ICM-86, pp. 798–820 (1986)Google Scholar
- 9.Furlan P., Stanev YA.S., Todorov I.T. (1991). Coherent state operators and n-point invariants for U q(sl(2)). Lett. Math. Physc. 22: 307–319 zbMATHCrossRefGoogle Scholar
- 10.Hadjiivanov L.K., Paunov R.R., Todorov I.T. (1992). U q–covariant oscillators and vertex operators. J. Math. Phys. 33(4): 1379–1394 CrossRefADSGoogle Scholar
- 11.Jantzen J.C. (1987). Representations of Algebraic Groups. Academic, zbMATHGoogle Scholar
- 12.Jurčo B. (1991). On coherent states for the simplest quantum groups. Lett. Math. Phys. 21: 51–58 CrossRefGoogle Scholar
- 13.Jurčo B., Štovíček P. (1993). Quantum dressing orbits on quantum groups. Commun. Math. Phys. 152: 97–126 CrossRefADSGoogle Scholar
- 14.Jurčo, B., Štovíček, P.: Coherent states for quantum compact groups. Commun. Math. Phys. 182, 221–251; arXiv:hep-th/9403114 (1996)Google Scholar
- 15.Klimyk A.U., Schmüdgen K. (1997). Quantum Groups and their Representations. Springer, Heidelberg zbMATHGoogle Scholar
- 16.Mack G., Schomerus V. (1992). Quasihopf quantum symmetry in quantum theory. Nucl. Phys. B 370: 185–230 CrossRefADSGoogle Scholar
- 17.Majid, S.: Foundations of Quantum Group Theory. Cambridge University Press, London (1995,2000)Google Scholar
- 18.Manin YU.I. (1988). Quantum Groups and Non-commutative Geometry. CRM, Montreal zbMATHGoogle Scholar
- 19.Montgomery, S.: Hopf algebras and their actions on rings. CBMS Regional Conference Series in Mathematics, vol. 82, AMS (1993)Google Scholar
- 20.Perelomov, A.M.: Coherent states for arbitrary Lie groups. Comm. Math. Phys. 26, 222–236; archived as arXiv:math-ph/0203002 (1972)Google Scholar
- 21.Perelomov, A.M.: Generalized Coherent States and their Applications. Texts and Monographs in Physics. Springer, Berlin xii+320 p. (1986)Google Scholar
- 22.Rawnsley J.H. (1977). Coherent states and Kähler manifolds. Quart. J. Math. Oxford 28(2): 403–415 zbMATHCrossRefGoogle Scholar
- 23.Rosenberg, A.L.: Non-commutative affine semischemes and schemes. Seminar on supermanifolds 26th edn. Dept. Math., U. Stockholm (1988)Google Scholar
- 24.Rosenberg A.L. (1998). Noncommutative schemes. Comp. Math. 112: 93–125 zbMATHCrossRefGoogle Scholar
- 25.Sazdjian H., Stanev Y.S., Todorov I.T. (1995). SU(3)-coherent state operators and invariant correlation functions and their quantum group counterparts. J. Math. Phys. 36: 2030–2052 zbMATHCrossRefADSGoogle Scholar
- 26.Schneider, H. J.: Lectures on Hopf algebras. Trabajos de Matemática, vol. 31. Universidad Nacional de Córdoba 58 p. (1995)Google Scholar
- 27.Schneider H.-J. (1990). Principal homogeneous spaces for arbitrary Hopf algebras. Israel J. Math. 72(1–2): 167–195 Google Scholar
- 28.Škoda, Z.: Coset spaces for quantum groups. Ph. D. Thesis, Univ. of Wisconsin-Madison, (available on request) (2002)Google Scholar
- 29.Škoda, Z.: Localizations for construction of quantum coset spaces. In: Hajac, P.M., Pusz, W. (eds.) Noncommutative geometry and quantum groups. vol.61, pp. 265–298, Banach Center Publications, Warszawa arXiv:math.QA/0301090 (2003)Google Scholar
- 30.Škoda, Z.: Globalizing Hopf–Galois extensions. preliminary versionGoogle Scholar
- 31.Škoda, Z.: Noncommutative localization in noncommutative geometry. In: London Math. Soc. Lec. Note Series, vol. 330, pp. 220–313, arXiv:math.QA/0403276Google Scholar
- 32.Škoda, Z.: Included-row exchange principle for quantum minors. math.QA/0510512Google Scholar
- 33.Škoda, Z.: Localized coinvariants I, II. (preprints)Google Scholar
- 34.Škoda, Z.: Every quantum minor generates an Ore set. math.QA/0604610Google Scholar
- 35.Soibelman Y. (1993). Orbit method for the algebras of functions on quantum groups and coherent states I. Int. Math. Res. Not. 6: 151–163 CrossRefGoogle Scholar
- 36.Spera M. (1993). On a generalized uncertainty principle, coherent states and the moment map. J. Geom. Phys. 12: 165–182 zbMATHCrossRefGoogle Scholar
- 37.Varilly, J.C.: Hopf algebras in noncommutative geometry. Lecture notes for the CIMPA Summer School in Villa de Leyva, arXiv:hep-th/0109077Google Scholar
Copyright information
© Springer 2007