Letters in Mathematical Physics

, Volume 79, Issue 1, pp 1–16 | Cite as

Non-zero Entropy Density in the XY Chain Out of Equilibrium



The von Neumann entropy density of a block of n spins is proved to be non-zero for large n in the non-equilibrium steady state of the XY chain constructed by coupling a finite cutout of the chain to the two infinite parts to its left and right which act as thermal reservoirs at different temperatures. Moreover, the non-equilibrium density is shown to be strictly greater than the density in thermal equilibrium.

Mathematics Subject Classification (2000)

46L60 47B35 82C10 82C23 


non-equilibrium steady state XY chain von Neumann entropy Toeplitz operators 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Antal T., Rácz Z., Rákos A., Schütz G.M. (1998): Isotropic transverse XY chain with energy and magnetization currents. Phys. Rev. E 57: 5184CrossRefADSGoogle Scholar
  2. 2.
    Araki H. (1971): On quasifree states of CAR and Bogoliubov automorphisms. Publ. RIMS Kyoto Univ. 6: 385MathSciNetGoogle Scholar
  3. 3.
    Araki H. (1984): On the XY-model on two-sided infinite chain. Publ. RIMS Kyoto Univ. 20: 277MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Araki H., Ho T.G. (2000): Asymptotic time evolution of a partitioned infinite two-sided isotropic XY-chain. Proc. Steklov Inst. Math. 228: 191MathSciNetGoogle Scholar
  5. 5.
    Aschbacher W.H., Barbaroux J.-M. (2006): Out of equilibrium correlations in the XY chain. Lett. Math. Phys. 77: 11MATHCrossRefMathSciNetADSGoogle Scholar
  6. 6.
    Aschbacher, W.H., Jakšić, V., Pautrat, Y., Pillet, C.-A.: Topics in non-equilibrium quantum statistical mechanics. In: Lecture Notes in Mathematics, vol. 1882, Springer, Berlin Heidelberg New York (2006)Google Scholar
  7. 7.
    Aschbacher W.H., Pillet C.-A. (2003): Non-equilibrium steady states of the XY chain. J. Stat. Phys. 112: 1153MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Böttcher A., Silbermann B. (2006): Analysis of Toeplitz Operators. Springer, Berlin Heidelberg New YorkMATHGoogle Scholar
  9. 9.
    Böttcher A., Silbermann B. (1999): Introduction to Large Truncated Toeplitz Matrices. Springer, Berlin Heidelberg New YorkMATHGoogle Scholar
  10. 10.
    Bratteli O., Robinson D.W. (1997): Operator Algebras and Quantum statistical Mechanics, vol. 2. Springer, Berlin Heidelberg New YorkGoogle Scholar
  11. 11.
    Callan C.G., Wilczek F. (1994): On geometric entropy. Phys. Lett. B 333, 55CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Castella H., Zotos X., Prelovšek P. (1995): Integrability and ideal conductance at finite temperatures. Phys. Rev. Lett. 74, 972CrossRefADSGoogle Scholar
  13. 13.
    Eisler V., Zimborás Z. (2005): Entanglement in the XX spin chain with an energy current. Phys. Rev. A 71, 042318CrossRefADSGoogle Scholar
  14. 14.
    Fiola T.M., Preskill J., Strominger A., Trivedi S.P. (1994): Black hole thermodynamics and information loss in two dimensions. Phys. Rev. D 50: 3987CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Holzhey C., Larsen F., Wilczek F. (1994): Geometric and renormalized entropy in conformal field theory. Nucl. Phys. B 424: 443MATHCrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Horn R.A., Johnson C.R. (1985): Matrix Analysis. Cambridge University Press, LondonMATHGoogle Scholar
  17. 17.
    Jakšić V., Pillet C.-A. (2002): Mathematical theory of non-equilibrium quantum statistical mechanics. J. Stat. Phys. 108, 787CrossRefMATHGoogle Scholar
  18. 18.
    Jin B.-Q., Korepin V.E. (2004): Quantum spin chain, Toeplitz determinants, and Fisher–Hartwig conjecture. J. Stat. Phys. 116, 79MATHCrossRefMathSciNetADSGoogle Scholar
  19. 19.
    Jordan P., Wigner E. (1928): Pauli’s equivalence prohibition. Z. Phys. 47, 631CrossRefADSGoogle Scholar
  20. 20.
    Latorre J.I., Rico E., Vidal G. (2004): Ground state entanglement in quantum spin chains. Quantum Inf. Comput. 4, 48MathSciNetMATHGoogle Scholar
  21. 21.
    Ruelle D. (2000): Natural nonequilibrium states in quantum statistical mechanics. J. Stat. Phys. 98, 57MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Sachdev S. (1999): Quantum phase transitions. Cambridge University Press, LondonGoogle Scholar
  23. 23.
    Sologubenko A.V., Felder E., Giannò K., Ott H.R., Vietkine A., Revcolevschi A. (2000): Thermal conductivity and specific heat of the linear chain cuprate Sr2CuO3: evidence for the thermal transport via spinons. Phys. Rev. B 62, R6108CrossRefADSGoogle Scholar
  24. 24.
    Sologubenko A.V., Giannò K., Ott H.R., Vietkine A., Revcolevschi A. (2001): Heat transport by lattice and spin excitations in the spin-chain compounds SrCuO2 and Sr2CuO3. Phys. Rev. B 64, 054412CrossRefADSGoogle Scholar
  25. 25.
    Srednicki M. (1993): Entropy and area. Phys. Rev. Lett. 71: 666MATHCrossRefADSMathSciNetGoogle Scholar
  26. 26.
    Vidal G., Latorre J.I., Rico E., Kitaev A. (2003): Entanglement in quantum critical phenomena. Phys. Rev. Lett. 60: 227902CrossRefADSGoogle Scholar
  27. 27.
    Zotos X. (1999): Finite temperature Drude weight of the one-dimensional spin-1/2 Heisenberg model. Phys. Rev. Lett. 82: 1764CrossRefADSGoogle Scholar
  28. 28.
    Zotos X., Naef F., Prelověk P. (1997): Transport and conservation laws. Phys. Rev. B 55: 11029CrossRefADSGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Zentrum Mathematik, M5Technische Universität MünchenGarchingGermany

Personalised recommendations