Letters in Mathematical Physics

, Volume 78, Issue 1, pp 61–71 | Cite as

Twisted Gauge Theories

  • Paolo Aschieri
  • Marija Dimitrijević
  • Frank Meyer
  • Stefan Schraml
  • Julius Wess


Gauge theories on a space-time that is deformed by the Moyal–Weyl product are constructed by twisting the coproduct for gauge transformations. This way a deformed Leibniz rule is obtained, which is used to construct gauge invariant quantities. The connection will be enveloping algebra valued in a particular representation of the Lie algebra. This gives rise to additional fields, which couple only weakly via the deformation parameter θ and reduce in the commutative limit to free fields. Consistent field equations that lead to conservation laws are derived and some properties of such theories are discussed.


deformed spaces twisted gauge transformations noncommutative gauge theories 

Mathematics Subject Classification

81T75 Noncommutative geometry methods 81T13 Yang-Mills and other gauge theories 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Weyl H. (1927). Quantum mechanics and group theory. Z. Phys. 46:1MATHCrossRefADSGoogle Scholar
  2. 2.
    Moyal J.E. (1949). Quantum mechanics as a statistical theory. Proc. Cambridge Phil. Soc. 45:99MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Aschieri P., Blohmann C., Dimitijević M., Meyer F., Schupp P., Wess J. (2005). A gravity theory on noncommutative spaces. Class. Quant. Grav. 22:3511 hep-th/0504183.MATHCrossRefADSGoogle Scholar
  4. 4.
    Aschieri P., Dimitrijević M., Meyer F., Wess J. (2006). Noncommutative geometry and gravity. Class. Quant. Grav. 23:1883 hep-th/0510059MATHCrossRefADSGoogle Scholar
  5. 5.
    Meyer, F.: Noncommutative spaces and gravity. In: Contribution to the proceedings of the I Modave Summer School in Mathematical Physics, June 2005, Modave, Belgium (2005), LMU-ASC 69/05, MPP-2005-130. hep-th/0510188Google Scholar
  6. 6.
    Seiberg N., Witten E. (1999). String theory and noncommutative geometry. JHEP 09:032 hep-th/9908142MATHMathSciNetCrossRefADSGoogle Scholar
  7. 7.
    Jurčo B., Schupp P. (2000). Noncommutative Yang–Mills from equivalence of star products. Eur. Phys. J. C14:367 hep-th/0001032CrossRefADSGoogle Scholar
  8. 8.
    Jurčo B., Schupp P., Wess J. (2000). Noncommutative gauge theory for Poisson manifolds. Nucl. Phys. B584:784 hep-th/0005005CrossRefADSMATHGoogle Scholar
  9. 9.
    Jurčo B., Schupp P., Wess J. (2001). Nonabelian noncommutative gauge theory via noncommutative extra dimensions. Nucl. Phys. B604:148 hep-th/0102129ADSGoogle Scholar
  10. 10.
    Jurčo B., Schraml S., Schupp P., Wess J. (2000). Enveloping algebra valued gauge transformations for non-Abelian gauge groups on non-commutative spaces. Eur. Phys. J. C17:521 hep-th/0006246ADSGoogle Scholar
  11. 11.
    Jurčo B., Möller L., Schraml S., Schupp P., Wess J. (2001). Construction of non-Abelian gauge theories on noncommutative spaces, Eur. Phys. J. C21:383 hep-th/0104153CrossRefADSGoogle Scholar
  12. 12.
    Wess, J.: Deformed coordinate spaces: derivatives. In: Lecture given at the Balkan workshop BW2003, August 2003, Vrnjacka Banja, Serbia. hep-th/0408080Google Scholar
  13. 13.
    Drinfel’d V.G. (1990). Quasi-Hopf algebras. Leningrad Math. J. 1:1419MathSciNetMATHGoogle Scholar
  14. 14.
    Chari V., Pressley A. (1995). A Guide to Quantum Groups 651p. Cambridge University Press, CambridgeMATHGoogle Scholar
  15. 15.
    Oeckl R. (2000). Untwisting noncommutative R d and the equivalence of quantum field theories. Nucl. Phys. B581:559 hep-th/0003018MathSciNetCrossRefADSGoogle Scholar
  16. 16.
    Vassilevich, D.V.: Twist to close (2006). hep-th/0602185Google Scholar
  17. 17.
    Chaichian M., Kulish P., Nishijima K., Tureanu A. (2004). On a Lorentz-invariant interpretation of noncommutative space-time and its implications on noncommutative QFT. Phys. Lett. B604:98 hep-th/0408069MathSciNetADSGoogle Scholar
  18. 18.
    Balachandran, A.P., Govindarajan, T.R., Gupta, K.S., Kurkcuoglu, S.: Noncommutative two dimensional gravities (2006). hep-th/0602265Google Scholar
  19. 19.
    Chaichian, M., Tureanu, A.: Twist symmetry and gauge invariance (2006). hep-th/0604025Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Paolo Aschieri
    • 5
  • Marija Dimitrijević
    • 4
  • Frank Meyer
    • 1
    • 2
  • Stefan Schraml
    • 2
  • Julius Wess
    • 1
    • 2
    • 3
  1. 1.Arnold Sommerfeld Center for Theoretical Physics, Fakultät für PhysikUniversität MünchenMunichGermany
  2. 2.Max-Planck-Institut für PhysikMunichGermany
  3. 3.Zentrum für Mathematische PhysikDESY und Universität HamburgHamburgGermany
  4. 4.Faculty of PhysicsUniversity of BelgradeBelgradeSerbia and Montenegro
  5. 5.Dipartimento di Scienze e Tecnologie AvanzateUniversitá del Piemonte Orientale, and INFNAlessandriaItaly

Personalised recommendations