Letters in Mathematical Physics

, Volume 78, Issue 1, pp 27–37 | Cite as

From Integrable Lattices to Non-QRT Mappings

  • N. Joshi
  • B. Grammaticos
  • T. Tamizhmani
  • A. Ramani


Second-order mappings obtained as reductions of integrable lattice equations are generally expected to have integrals that are ratios of biquadratic polynomials, i.e., to be of QRT-type. In this paper we find reductions of integrable lattice equations that are not of this type. The mappings we consider are exact reductions of integrable lattice equations proposed by Adler et al. [Comm Math Phys 233: 513, 2003]. Surprisingly, we found that these mappings possess invariants that are of the type originally studied by Hirota et al. [J Phys A 34: 10377, 2001]. Moreover, we show that several mappings obtained are linearisable and we present their linearisation.


integrable mappings linearisation invariants reductions of lattice equations 

Mathematics Subject Classification (2000)

39A12 37J35 37J15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hirota R. (1977). Nonlinear partial difference equations. I. A difference analogue of the Korteweg-de Vries equation. J. Phys. Soc. Jpn. 43:1424MathSciNetCrossRefADSGoogle Scholar
  2. 2.
    Ablowitz M.J., Ladik J.F. (1976). A nonlinear difference scheme and inverse scattering. Stud. Appl. Math. 55:213MATHMathSciNetGoogle Scholar
  3. 3.
    Nijhoff F.W., Quispel G.R.W., Capel H. (1983). Direct linearization of nonlinear difference-difference equations. Phys. Lett. A 97:125MathSciNetCrossRefADSGoogle Scholar
  4. 4.
    Quispel G.R.W., Roberts J.A.G., Thomson C.J. (1988). Integrable mappings and soliton equations. Phys. Lett. A 126:419MATHMathSciNetCrossRefADSGoogle Scholar
  5. 5.
    Quispel G.R.W., Roberts J.A.G., Thomson C.J. (1989). Integrable mappings and soliton equations. II. Physica D 34:183MATHGoogle Scholar
  6. 6.
    Grammaticos B., Ramani A., Papageorgiou V. (1991). Do integrable mappings have the Painlevé property? Phys. Rev. Lett. 67:1825MATHMathSciNetCrossRefADSGoogle Scholar
  7. 7.
    Joshi N. (1994). Singularity analysis and integrability for discrete dynamical systems. J. Math. Anal. Appl. 184:573MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Ramani A., Grammaticos B., Hietarinta J. (1991). Discrete versions of the Painlevé equations. Phys. Rev. Lett. 67:1829MATHMathSciNetCrossRefADSGoogle Scholar
  9. 9.
    Baxter R.J. (1982). Exactly solved models in Statistical Mechanics. Associated Press, London, p. 471MATHGoogle Scholar
  10. 10.
    Ramani A., Carstea A.S., Grammaticos B., Ohta Y. (2002). On the autonomous limit of discrete Painlevé equations. Physica A 305:437MATHMathSciNetCrossRefADSGoogle Scholar
  11. 11.
    Iatrou A., Roberts J.A.G. (2001). Integrable mappings of the plane preserving biquadratic invariant curves. J. Phys. A 34:6617MATHMathSciNetCrossRefADSGoogle Scholar
  12. 12.
    Adler V., Bobenko A., Yu. (2003). Classification of integrable equations on quad-graphs. The consistency approach. Suris, Comm. Math. Phys. 233, 513MATHADSGoogle Scholar
  13. 13.
    Nijhoff F.W., Walker A.J. (2001). The discrete and continuous Painlevé VI hierarchy and the Garnier systems. Glasgow Math. J. 43, 109MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hietarinta J. (2005). Searching for CAC-maps. J. Nonlinear Math. Phys. 12(2):223–230MATHMathSciNetGoogle Scholar
  15. 15.
    Hirota R., Kimura K., Yahagi H. (2001). How to find the conserved quantities of nonlinear discrete equations. J. Phys. A 34:10377MATHMathSciNetCrossRefADSGoogle Scholar
  16. 16.
    Matsukidaira, J., Takahashi, D.: Third-order integrable difference equations generated by a pair of second-order equations, preprint (2005)Google Scholar
  17. 17.
    Kimura K., Yahagi H., Hirota R., Ramani A., Grammaticos B., Ohta Y. (2002). A new class of integrable discrete systems. J. Phys. A 35:9205MATHMathSciNetCrossRefADSGoogle Scholar
  18. 18.
    Viallet C.M., Ramani A., Grammaticos B. (2004). On the integrability of correspondences associated to integral curves. Phys. Lett. A 322:186MathSciNetCrossRefADSGoogle Scholar
  19. 19.
    Ramani A., Grammaticos B. (1996). Discrete Painlevé equations: coalescences, limits and degeneracies. Physica A 228:160MATHMathSciNetCrossRefADSGoogle Scholar
  20. 20.
    Ramani A., Grammaticos B., Lafortune S., Ohta Y. (2000). Linearizable mappings and the low-growth criterion. J. Phys. A 33:L287MATHMathSciNetCrossRefADSGoogle Scholar
  21. 21.
    Grammaticos B., Ramani A., Lafortune S. (1998). The Gambier mapping, revisited. Physica A 253:260MATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Grammaticos B., Ramani A., Satsuma J., Willox R., Carstea A.S. (2005). Reductions of integrable lattices. J. Nonlin. Math. Phys. 12(1):363MathSciNetGoogle Scholar
  23. 23.
    Bobenko, A., Suris, Yu.: Discrete Differential Geometry. Consistency as Integrability, preprint (2005)Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • N. Joshi
    • 1
  • B. Grammaticos
    • 2
  • T. Tamizhmani
    • 2
    • 3
  • A. Ramani
    • 4
  1. 1.School of Mathematics and Statistics F07The University of SydneySydneyAustralia
  2. 2.GMPIBUniversité Paris VIIParisFrance
  3. 3.Department of MathematicsKanchi Mamunivar Centre for Postgraduate StudiesPondicherryIndia
  4. 4.CPTÉcole PolytechniquePalaiseauFrance

Personalised recommendations