Letters in Mathematical Physics

, Volume 76, Issue 2–3, pp 297–316 | Cite as

Finite-gap Solutions of the Fuchsian Equations

  • Alexander O. SmirnovEmail author


We find a new class of Fuchsian equations, with algebro-geometric solutions associated to a hyperelliptic curve. A method for calculating its arithmetic genus and branching points is suggested. Numerous examples are given.

Mathematics Subject Classification (2000)

33E30 34L40 14H70 


Fuchsian equations Heun equation Schrödinger operators finite-gap solutions elliptic potentials elliptic solitons hyperelliptic curves spectral curves 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akhiezer N.I. (1990) Elements of the theory elliptic functions. Transl. Math. Monogr., vol. 79. American. Mathematical Society, Providence(RI)zbMATHGoogle Scholar
  2. 2.
    Belokolos E.D., Bobenko A.I., Enol’skii V.Z., Its A.R., Matveev V.B. (1994) Algebro-geometric approach to nonlinear integrable equations. Springer Series in nonlinear dynamics. Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  3. 3.
    Belokolos E.D., Enol’skii V.Z. (1989) Verdier’s elliptic solitons and the Weierstrass reduction theory. Funktsional. Anal. i Prilozhen. 23(1): 57–58CrossRefMathSciNetGoogle Scholar
  4. 4.
    Belokolos E.D., Enol’skii V.Z. (1994) Reduction of theta function and elliptic finite-gap potentials. Acta Appl. Math. 36, 87–117CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Calogero, F., Degasperis, A. Spectral transform and solitons. I. Tools to solve and investigate nonlinear evolution equations. Stud. Math. Appl., vol. 13. Lecture Notes in Computer Science, vol. 144. Amsterdam–New York: North-Holland (1982)Google Scholar
  6. 6.
    Darboux G. (1882) Sur une équation linéaire. C.R. t. XCIV(25): 1645–1648Google Scholar
  7. 7.
    Dubrovin B.A., Matveev V.B., Novikov S.P. (1976) Nonlinear equations of Korteweg-de Vries type, finite-band linear operators and Abelian varieties. Uspehi Mat. Nauk 31, 55–136MathSciNetzbMATHGoogle Scholar
  8. 8.
    Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G. (1981) Higher transcendental functions. III. Based on notes left by Harry Bateman. Robert E. Krieger Publisher, MelbourneGoogle Scholar
  9. 9.
    Gesztesy F., Unterkofler K., Weikard R. (2006) An explicit characterization of Calogero– Moser systems. Trans Ame Mathe Soci 358, 603–656CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Gesztesy F., Weikard R. (1996) Picard potentials and Hill’s equation on torus. Acta Math. 176, 73–107CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Gesztesy F., Weikard R. (1995) On Picard potentials. Diff. Int. Eq. 8(6): 1453–1476MathSciNetzbMATHGoogle Scholar
  12. 12.
    Ince E.L. (1956) Ordinary differential equations. Dover Publications, New YorkGoogle Scholar
  13. 13.
    Kamke E. (1977) Differentialgleichungen. Lösungsmethoden und Lösungen. I: Gewöhnliche Differentialgleichungen, Neunte Auflage, Mit einem Vorwort von Detlef Kamke. B.G. Teubner, Stuttgart [German]Google Scholar
  14. 14.
    Matveev V.B. (1976) Abelian functions and solitons. Preprint no. 373, University. of Wrocław, Wroclaw, p. 98Google Scholar
  15. 15.
    Novikov S.P. (1974) A periodic problem for the Korteweg-de Vries equation. I. Funkcional. Anal. i Priložen. 8(3): 54–66Google Scholar
  16. 16.
    Ronveaux, A. (ed.): Heun’s differential equations. Newyork: The Oxford Science Publications, The Clarendon Press, Oxford University Press (1995)Google Scholar
  17. 17.
    Yu S., Slavyanov, Lay W. (2000) Special functions. Oxford University Press, New YorkzbMATHGoogle Scholar
  18. 18.
    Smirnov A.O. (2002) Elliptic solitons and Heun equation. CRM Proc. Lecture Notes. 32, 287–305Google Scholar
  19. 19.
    Smirnov, A.O. Elliptic solutions of the Korteweg-de Vries equation. Mat. Zametki. 45(6), 66–73 (1989); English translation. Math. Notes 45(6), 476–481 (1989)Google Scholar
  20. 20.
    Smirnov A.O. (1994) Finite-gap elliptic solutions of the KdV equation. Acta Appl. Math. 36, 125–166CrossRefMathSciNetzbMATHGoogle Scholar
  21. 21.
    Takemura, K. The Heun equation and the Calogero–Moser–Sutherland system III: the finite-gap property and the monodromy. Preprint, math. CA/0201208 (2002)Google Scholar
  22. 22.
    Treibich A. (1992) Revêtements exceptionnels et sommes de 4 nombres triangulaires. Duke Math. J. 68, 217–236CrossRefMathSciNetzbMATHGoogle Scholar
  23. 23.
    Treibich, A. Beyond the exceptional covers and their canonical hyper-elliptic potentials. Preprint, Université d’Artois no. 99-3 (1999)Google Scholar
  24. 24.
    Treibich A. (2001) Hyperelliptic tangential coverings and finite-gap potentials. Uspekhi Mat. Nauk 56(6): 89–136MathSciNetGoogle Scholar
  25. 25.
    Treibich, A., Verdier, J.-L. Solitons elliptiques. Progr. Math. 88, The Grothendieck Festschrift, vol. III, Birkhäuser-Boston, Boston, (MA), pp. 437–480 (1990) [French]Google Scholar
  26. 26.
    Treibich A., Verdier J.-L. (1990) Revêtements tangentiels et sommes de 4 nombres triangulaires. C.R. Acad. Sci. Paris, Sér. I Math. 311(1): 51–54MathSciNetzbMATHGoogle Scholar
  27. 27.
    Treibich A., Verdier J.-L. (1997) Au delà des potentiels hyperelliptiques exceptionnels. C. R. Acad. Sci. Paris, Sér. I Math. 325, 1101–1106MathSciNetzbMATHGoogle Scholar
  28. 28.
    Verdier J.-L. (1988) New elliptic solitons. Algebraic Anal, vol. 2. pp.901–910 Academic Press, Boston, (MA)Google Scholar
  29. 29.
    Whittaker E.T., Watson G.N. (1996) A course of modern analysis. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions. Cambridge Mathematical Library, Cambridge University Press, CambridgezbMATHGoogle Scholar
  30. 30.
    Zaharov V.E., Manakov S.V., Novikov S.P., Pitaevskii L.P. (1980) Theory of solitons. “Nauka”, Moscow[Russian]Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Department of MathematicsSt.-Petersburg State University of Aerospace InstrumentationSt.-PetersburgRussia

Personalised recommendations