Letters in Mathematical Physics

, Volume 76, Issue 1, pp 93–108

Poisson Structure and Action-Angle Variables for the Camassa–Holm Equation

Article

Abstract

The Poisson brackets for the scattering data of the Camassa-Holm equation are computed. Consequently, the action-angle variables are expressed in terms of the scattering data.

Keywords

Poisson brackets Scattering data Action-angle variables 

Mathematics Subject Classifications (2000)

35Q58 37K15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arkadiev V.A., Pogrebkov A.K., Polivanov M.K. (1988). Theor. Math. Phys 75:448CrossRefGoogle Scholar
  2. 2.
    Beals R., Sattinger D., Szmigielski J. (1998). Acoustic scattering and the extended Korteweg-de Vries hierarchy. Adv. Math. 140:190–206CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Beals R., Sattinger D., Szmigielski J. (1999). Multi-peakons and a theorem of Stieltjes. Inv. Problems 15:L1-L4CrossRefMATHADSMathSciNetGoogle Scholar
  4. 4.
    Bennewitz, C. (2004). On the spectral problem associated with the Camassa–Holm equation. J. Nonlinear Math. Phys. 11:422–434MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Birkhoff G., Rota G.-C. (1969). Ordinary Differential Equations. Blaisdell Publishing Company, WalthamMATHGoogle Scholar
  6. 6.
    Buslaev V.S., Faddeev L.D., Takhtajan L.A. (1986). Scattering theory for the Korteweg- De Vries (KdV) equation and its Hamiltonian interpretation. Physica D 18:255CrossRefMATHADSMathSciNetGoogle Scholar
  7. 7.
    Camassa R., Holm D. (1993). An integrable shallow water equation with peaked solitons. Phys. Rev. Lett.71:1661–1664PubMedMATHCrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Casati P., Lorenzoni P., Ortenzi G., Pedroni M. (2005). On the local and nonlocal Camassa–Holm Hierarchies. J. Math. Phys. 46:042704CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Constantin A. (1998). On the inverse spectral problem for the Camassa-Holm equation. J. Funct. Anal. 155:352–363CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Constantin A. (2000). Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Ann. Inst. Fourier (Grenoble) 50:321–362MATHMathSciNetGoogle Scholar
  11. 11.
    Constantin A. (2001). On the scattering problem for the Camassa–Holm equation Proc. R. Soc. Lond. A457:953–970ADSMathSciNetGoogle Scholar
  12. 12.
    Constantin A., Escher J. (1998). Wave breaking for nonlinear nonlocal shallow water equations. Acta Mathematica 181: 229–243MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Constantin A., Kolev B. (2002). On the geometric approach to the motion of inertial mechanical systems. J. Phys. A: Math. Gen. 35:R51–R79CrossRefMATHADSMathSciNetGoogle Scholar
  14. 14.
    Constantin A., Kolev B. (2003). Geodesic flow on the diffeomorphism group of the circle. Comment. Math. Helv. 78: 787–804CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Constantin A., McKean H.P. (1999). A shallow water equation on the circle. Commun. Pure Appl. Math. 52:949–982CrossRefMathSciNetGoogle Scholar
  16. 16.
    Constantin A., Strauss W. (2000). Stability of peakons. Commun. Pure Appl. Math. 53:603–610CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Constantin A., Strauss W. (2002). Stability of the Camassa–Holm solitons. J. Nonlin. Sci. 12:415–422CrossRefMATHADSMathSciNetGoogle Scholar
  18. 18.
    Constantin, A., Kappeler, T., Kolev, B., Topalov, P.: On geodesic exponential maps of the Virasoro group, Preprint No 13-2004, Institute of Mathematics, University of Zurich Zurich (2004)Google Scholar
  19. 19.
    Faddeev L.D., Takhtajan L.A. (1985). Poisson structure for the KdV equation. Lett. Math. Phys. 10:183CrossRefMATHADSMathSciNetGoogle Scholar
  20. 20.
    Faddeev L.D., Takhtajan L.A. (1987). Hamiltonian Methods in the Theory of Solitons. Springer, Berlin Heidelberg NewyorkMATHGoogle Scholar
  21. 21.
    Fisher M., Shiff J. (1999). The Camassa–Holm equation: conserved quantities and the initial value problem Phys. Lett. A 259:371–376CrossRefMathSciNetMATHGoogle Scholar
  22. 22.
    Fokas A., Fuchssteiner B. (1981). Symplectic structures, their Bäcklund transformation and hereditary symmetries. Physica D4:47–66ADSMathSciNetGoogle Scholar
  23. 23.
    Ivanov R.I. (2006). Extended Camassa–Holm hierarchy and conserved quantities. Zeitschrift für Naturforschung 61a: 199–205Google Scholar
  24. 24.
    Jackson J.D. (1999). Classical Electrodynamics. Wiley, New YorkMATHGoogle Scholar
  25. 25.
    Johnson R.S. (2002). Camassa–Holm, Korteweg-de Vries and related models for water waves. J. Fluid. Mech. 457:63–82CrossRefADSGoogle Scholar
  26. 26.
    Johnson R.S. (2003). On solutions of the Camassa–Holm equation. Proc. Roy. Soc. Lond. A459:1687–1708ADSGoogle Scholar
  27. 27.
    Kaup, D.J.: Evolution of the scattering data of the Camassa–Holm equation for general initial data. Stud. Appl. Math. (2006 in press)Google Scholar
  28. 28.
    Lenells J. (2002). The scattering approach for the Camassa–Holm equation. J. Nonlin. Math. Phys. 9:389–393MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Lenells J. (2005). Conservation laws of the Camassa–Holm equation. J. Phys. A: Math. Gen. 38:869–880CrossRefMATHADSMathSciNetGoogle Scholar
  30. 30.
    McKean H.P. (1998). Breakdown of a shallow water equation. Asian J. Math. 2:867–874MATHMathSciNetGoogle Scholar
  31. 31.
    Misiolek G. (1998). A shallow water equation as a geodesic flow on the Bott–Virasoro group. J. Geom. Phys. 24:203–20CrossRefMATHADSMathSciNetGoogle Scholar
  32. 32.
    Penskoi A. (2005). Canonically conjugate variables for the periodic Camassa–Holm equation. Nonlinearity 18:415–421CrossRefMATHADSMathSciNetGoogle Scholar
  33. 33.
    Reyes E. (2002). Geometric integrability of the Camassa–Holm equation. Lett. Math. Phys. 59:117–131CrossRefMATHADSMathSciNetGoogle Scholar
  34. 34.
    Vaninsky K.L. (2005). Equations of Camassa–Holm type and Jacobi ellipsoidal coordinates. Comm. Pure Appl. Math. 58:1149–1187CrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    Zakharov V.E., Faddeev L.D. (1971). Korteweg-de Vries equation is a completely integrable Hamiltonian system. Funkz. Anal. Priloz. 5:18–27 [Func. Anal. Appl. 5, 280–287 (1971)]Google Scholar
  36. 36.
    Zakharov V.E., Manakov S.V. (1974). Complete integrability of the nonlinear Schrodinger equation, Teor. Mat. Fiz. 19:332–343 [Theor. Math. Phys. 6, 68–73 (1974)]MATHGoogle Scholar
  37. 37.
    Zakharov V.E., Manakov S.V., Novikov S.P., Pitaevskii L.P. (1984). Theory of Solitons: the Inverse Scattering Method. Plenum, New YorkGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.School of MathematicsTrinity CollegeDublin 2Ireland
  2. 2.Institute for Nuclear Research and Nuclear EnergyBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations