Advertisement

Letters in Mathematical Physics

, Volume 76, Issue 1, pp 77–91 | Cite as

Hopf Modules and Noncommutative Differential Geometry

  • Atabey KaygunEmail author
  • Masoud Khalkhali
Article

Abstract

We define a new algebra of noncommutative differential forms for any Hopf algebra with an invertible antipode. We prove that there is a one-to-one correspondence between anti-Yetter–Drinfeld modules, which serve as coefficients for the Hopf cyclic (co)homology, and modules which admit a flat connection with respect to our differential calculus. Thus, we show that these coefficient modules can be regarded as “flat bundles” in the sense of Connes’ noncommutative differential geometry.

Keywords

noncommutative differential geometry Hopf cyclic cohomology Hopf algebras flat bundles 

Mathematics Subject Classifications (2000)

58B34 46L87 46L80 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brzezinski, T., Wisbauer, R.: Corings and comodules. N. 309. London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (2003)Google Scholar
  2. 2.
    Connes A. (1985). Noncommutative differential geometry. Inst. Hautes Études Sci. Publ. Math. 62:257–360CrossRefMathSciNetGoogle Scholar
  3. 3.
    Connes A., Moscovici H. (1998). Hopf algebras, cyclic cohomology and transverse index theorem. Comm. Math. Phys. 198:199–246CrossRefzbMATHADSMathSciNetGoogle Scholar
  4. 4.
    Connes A., Moscovici H. (1999). Cyclic cohomology and Hopf algebras. Lett. Math. Phys. 48(1):97–108CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Connes A., Moscovici H. (2000). Cyclic cohomology and Hopf algebra symmetry. Lett. Math. Phys. 52(1):1–28CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Hajac P.M., Khalkhali M., Rangipour B., Sommerhäuser Y. (2004). Hopf-cyclic homology and cohomology with coefficients. C. R. Math. Acad. Sci. Paris 338(9):667–672zbMATHMathSciNetGoogle Scholar
  7. 7.
    Hajac P.M., Khalkhali M., Rangipour B., Sommerhäuser Y. (2004). Stable anti-Yetter–Drinfeld modules. C. R. Math Acad. Sci. Paris 338(8):587–590zbMATHMathSciNetGoogle Scholar
  8. 8.
    Kaygun A. (2005). Bialgebra cyclic homology with coefficients. K–Theory 34(2):151–194zbMATHMathSciNetGoogle Scholar
  9. 9.
    Khalkhali M., Rangipour B. (2002). A new cyclic module for Hopf algebras. K–Theory 27(2):111–131zbMATHMathSciNetGoogle Scholar
  10. 10.
    Khalkhali M., Rangipour B. (2003). Invariant cyclic homology. K–Theory 28(2):183–205zbMATHMathSciNetGoogle Scholar
  11. 11.
    Panaite, F., Staic, M.D.: Generalized (anti) Yetter–Drinfeld modules as components of a braided T-category. Preprint at arXiv:math.QA/0503413Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Department of MathematicsThe University of Western OntarioLondonCanada

Personalised recommendations