Hopf Modules and Noncommutative Differential Geometry
Article
First Online:
- 63 Downloads
- 2 Citations
Abstract
We define a new algebra of noncommutative differential forms for any Hopf algebra with an invertible antipode. We prove that there is a one-to-one correspondence between anti-Yetter–Drinfeld modules, which serve as coefficients for the Hopf cyclic (co)homology, and modules which admit a flat connection with respect to our differential calculus. Thus, we show that these coefficient modules can be regarded as “flat bundles” in the sense of Connes’ noncommutative differential geometry.
Keywords
noncommutative differential geometry Hopf cyclic cohomology Hopf algebras flat bundlesMathematics Subject Classifications (2000)
58B34 46L87 46L80Preview
Unable to display preview. Download preview PDF.
References
- 1.Brzezinski, T., Wisbauer, R.: Corings and comodules. N. 309. London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (2003)Google Scholar
- 2.Connes A. (1985). Noncommutative differential geometry. Inst. Hautes Études Sci. Publ. Math. 62:257–360CrossRefMathSciNetGoogle Scholar
- 3.Connes A., Moscovici H. (1998). Hopf algebras, cyclic cohomology and transverse index theorem. Comm. Math. Phys. 198:199–246CrossRefzbMATHADSMathSciNetGoogle Scholar
- 4.Connes A., Moscovici H. (1999). Cyclic cohomology and Hopf algebras. Lett. Math. Phys. 48(1):97–108CrossRefzbMATHMathSciNetGoogle Scholar
- 5.Connes A., Moscovici H. (2000). Cyclic cohomology and Hopf algebra symmetry. Lett. Math. Phys. 52(1):1–28CrossRefzbMATHMathSciNetGoogle Scholar
- 6.Hajac P.M., Khalkhali M., Rangipour B., Sommerhäuser Y. (2004). Hopf-cyclic homology and cohomology with coefficients. C. R. Math. Acad. Sci. Paris 338(9):667–672zbMATHMathSciNetGoogle Scholar
- 7.Hajac P.M., Khalkhali M., Rangipour B., Sommerhäuser Y. (2004). Stable anti-Yetter–Drinfeld modules. C. R. Math Acad. Sci. Paris 338(8):587–590zbMATHMathSciNetGoogle Scholar
- 8.Kaygun A. (2005). Bialgebra cyclic homology with coefficients. K–Theory 34(2):151–194zbMATHMathSciNetGoogle Scholar
- 9.Khalkhali M., Rangipour B. (2002). A new cyclic module for Hopf algebras. K–Theory 27(2):111–131zbMATHMathSciNetGoogle Scholar
- 10.Khalkhali M., Rangipour B. (2003). Invariant cyclic homology. K–Theory 28(2):183–205zbMATHMathSciNetGoogle Scholar
- 11.Panaite, F., Staic, M.D.: Generalized (anti) Yetter–Drinfeld modules as components of a braided T-category. Preprint at arXiv:math.QA/0503413Google Scholar
Copyright information
© Springer 2006