Letters in Mathematical Physics

, Volume 74, Issue 3, pp 263–291 | Cite as

Supertrace and Superquadratic Lie Structure on the Weyl Algebra, and Applications to Formal Inverse Weyl Transform

Article

Abstract

Using the Moyal *-product and orthosymplectic supersymmetry, we construct a natural nontrivial supertrace and an associated nondegenerate invariant supersymmetric bilinear form for the Lie superalgebra structure of the Weyl algebra W. We decompose adjoint and twisted adjoint actions. We define a renormalized supertrace and a formal inverse Weyl transform in a deformation quantization framework and develop some examples

Keywords

Deformation quantization supersymmetry Weyl algebra supertrace renormalization formal inverse Weyl transform 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnal, D., Benamor, H., Benayadi, S., Pinczon, G.: Une algèbre de Lie non semi-simple rigide et sympathique: \(H^1 (\mathfrak{g})=H^2 (\mathfrak{g}) =H^0 (\mathfrak{g}, \mathfrak{g})=H\sp 1(\mathfrak{g}, \mathfrak{g})=H\sp 2(\mathfrak{g}, \mathfrak{g})= \{0\}\). C. R. Acad. Sci. Paris, Sér. I 315(3), 261–263 (1992)MathSciNetMATHGoogle Scholar
  2. 2.
    Arnaudon D., Bauer M., Frappat L. (1997). On Casimir’s ghost. Commun. Math. Phys. 187(2):429–439CrossRefADSMathSciNetMATHGoogle Scholar
  3. 3.
    Bayen F., Flato M., Frønsdal C., Lichnerowicz A., Sternheimer D. Deformation theory and quantization I,II. Deformations of symplectic structures, Physical applications. Ann. Phys. 111, 61–110, 111–151 (1978)Google Scholar
  4. 4.
    Bonneau P., Flato M., Gerstenhaber M., Pinczon G. (1994). The hidden group structure of quantum groups: Strong duality, rigidity and preferred deformations. Commun. Math. Phys. 61(1):125–156CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Connes A., Flato M., Sternheimer D. (1992). Closed star products and cyclic cohomology. Lett. Math. Phys. 24(1):1–12CrossRefADSMathSciNetMATHGoogle Scholar
  6. 6.
    Dixmier, J.: Sur les algèbres de Weyl. Bull. Soc. Math. Fr. 96, 209–242 (1968). Sur les algèbres de Weyl II. Bull. Sci. Math. Sér94, 289–301 (1970)Google Scholar
  7. 7.
    Fronsdal C., Flato M., Hirai T (eds). (1986). Essays on supersymmetry. Mathematical physics studies, vol 8. D Reidel Publishing, DordrechtGoogle Scholar
  8. 8.
    Gié, P.-A., Pinczon G., Ushirobira R. (2003). Back to the Amitsur–Levitzki theorem: a super version for the orthosymplectic Lie superalgebra \(\mathfrak{osp}(1, 2n)\). Lett. Math. Phys. 66(1–2):141–155CrossRefADSMathSciNetMATHGoogle Scholar
  9. 9.
    Gorelik M. (2000). On the ghost centre of Lie superalgebras. Ann. Inst. Fourier 50(6):1745–1764MathSciNetMATHGoogle Scholar
  10. 10.
    Kac V.G. (1990). Infinite dimensional Lie algebras. Cambridge University Press, CambridgeMATHGoogle Scholar
  11. 11.
    Lesimple M., Pinczon G. (2001). Deformations of the metaplectic representations. J. Math. Phys. 42(4):1887–1899CrossRefADSMathSciNetMATHGoogle Scholar
  12. 12.
    Montgomery S. (1997). Constructing simple Lie superalgebras from associative graded algebras. J. Algebra 195(2):558–579CrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    Musson I.M. (1999). Some Lie superalgebras associated to the Weyl algebras. Proc. Am. Math. Soc. 127(10):2821–2827CrossRefMathSciNetMATHGoogle Scholar
  14. 14.
    Pinczon G. (1997). On the equivalence between continuous and differential deformation theories. Lett. Math. Phys. 39(2):143–156CrossRefMathSciNetMATHGoogle Scholar
  15. 15.
    Pinczon G. (1990). The enveloping algebra of the Lie superalgebra \(\mathfrak{osp} (1,2)\). J. Algebra 132(1): 219–242CrossRefMathSciNetMATHGoogle Scholar
  16. 16.
    Pinczon G., Simon J. (1978). Non-linear representations of inhomogeneous groups. Lett. Math. Phys. 2:499–504CrossRefADSMathSciNetMATHGoogle Scholar
  17. 17.
    Sternheimer D. Deformation quantization: Twenty years after. In: Rembielinski J (eds). Particles, fields, and gravitation, Papers from the conference dedicated to the memory of Ryszard Raczka, Lódz Poland, April 15–19, 1998. Woodbury, NY: American Institute of Physics. AIP Conf. Proc. 453, 107–145 (1998)Google Scholar
  18. 18.
    Dito G., Sternheimer D. (2002). Deformation quantization: genesis, developments and metamorphoses. Deformation quantization (Strasbourg, 2001), IRMA Lect. Math. Theor. Phys. 1:9–54MathSciNetGoogle Scholar
  19. 19.
    Szegö G. (1939). Orthogonal polynomials. American Mathematical Society Colloquium Publications, vol 23. American Mathematical Society, New YorkGoogle Scholar
  20. 20.
    Très F. (1967). Topological vector spaces, distributions and kernels. Academic Press, New York, LondonGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Institut de Mathématiques de BourgogneUniversité de BourgogneDijon CedexFrance

Personalised recommendations