Khovanov-Rozansky Homology and Topological Strings
Article
First Online:
- 214 Downloads
- 97 Citations
Abstract
We conjecture a relation between the sl(N) knot homology, recently introduced by Khovanov and Rozansky, and the spectrum of BPS states captured by open topological strings. This conjecture leads to new regularities among the sl(N) knot homology groups and suggests that they can be interpreted directly in topological string theory. We use this approach in various examples to predict the sl(N) knot homology groups for all values of N. We verify that our predictions pass some non-trivial checks
Keywords
knots quantum group invariants knot homology topological strings BPS statesPreview
Unable to display preview. Download preview PDF.
References
- 1.Schwarz A. New topological invariants arising in the theory of quantized fields. Baku International Topological Conference Abstracts (part II) (1987)Google Scholar
- 2.Witten E. (1989). Quantum field theory and the jones polynomial. Commun. Math. Phys. 121:351zbMATHCrossRefADSMathSciNetGoogle Scholar
- 3.Freyd P., Yetter D., Hoste J., Lickorish W., Millett K., Oceanu A. (1985). A new polynomial invariant of knots and links. Bull. Amer. Math. Soc. 12:239zbMATHCrossRefMathSciNetGoogle Scholar
- 4.Witten E. (1995). Chern-Simons gauge theory as a string theory. Prog. Math. 133:637 hep-th/9207094MathSciNetGoogle Scholar
- 5.Gopakumar R., Vafa C. (1999). On the gauge theory/geometry correspondence. Adv. Theor. Math. Phys. 3:1415 hep-th/9811131zbMATHMathSciNetGoogle Scholar
- 6.Gopakumar, R., Vafa, C.: M-theory and topological strings. I,II. hep-th/9809187; hep-th/9812127Google Scholar
- 7.Ooguri H., Vafa C. (2000). Knot invariants and topological strings. Nucl. Phys. B577:419zbMATHCrossRefADSMathSciNetGoogle Scholar
- 8.Labastida J.M.F., Marino M., Vafa C. (2000). Knots, links and branes at large N. JHEP 0011:007 hep-th/0010102CrossRefADSMathSciNetGoogle Scholar
- 9.Hosono S., Saito M.-H., Takahashi A. (1999). Holomorphic anomaly equation and BPS state counting of rational elliptic surface. Adv. Theor. Math. Phys. 3:177zbMATHMathSciNetGoogle Scholar
- 10.Hosono S., Saito M.-H., Takahashi A. (2001). Relative Lefschetz action and BPS state counting. Int. Math. Res. Notices 15:783CrossRefMathSciNetGoogle Scholar
- 11.Katz S., Klemm A., Vafa C. (1999). M-theory, topological strings and spinning black holes. Adv. Theor. Math. Phys. 3:1445 hep-th/9910181zbMATHMathSciNetGoogle Scholar
- 12.Maulik D., Nekrasov, N., Okounkov, A., Pandharipande, R.: Gromov-Witten theory and Donaldson-Thomas theory, I. math.AG/0312059Google Scholar
- 13.Katz, S.: Gromov-Witten, Gopakumar-Vafa, and Donaldson-Thomas invariants of Calabi-Yau threefolds. math.ag/0408266Google Scholar
- 14.Khovanov M. (2000). A categorification of the Jones polynomial. Duke Math. J. 101:359 math.QA/9908171zbMATHCrossRefMathSciNetGoogle Scholar
- 15.Khovanov M. (2005). Categorifications of the colored Jones polynomial. J. Knot Theory Ramifications 14:111 math.QA/0302060zbMATHCrossRefMathSciNetGoogle Scholar
- 16.Khovanov M. (2004). sl(3) link homology. Algebr. Geom. Topol. 4:1045 math.QA/0304375zbMATHCrossRefMathSciNetGoogle Scholar
- 17.Khovanov, M., Rozansky, L.: Matrix factorizations and link homology. math.QA/ 0401268Google Scholar
- 18.Bar-Natan D. (2002). On Khovanov’s categorification of the Jones polynomial. Algebr. Geom. Topol. 2:337 math.QA/0201043zbMATHCrossRefMathSciNetGoogle Scholar
- 19.Khovanov, M.: An invariant of tangle cobordisms. math.QA/0207264Google Scholar
- 20.Jacobsson M. (2004). An invariant of link cobordisms from Khovanov’s homology. Algebr. Geom. Topol. 4:1211 math.GT/0206303zbMATHCrossRefMathSciNetGoogle Scholar
- 21.Shumakovitch, A.: KhoHo – a program for computing and studying Khovanov homology. http://www.geometrie.ch/KhoHoGoogle Scholar
- 22.Hollowood, T.J., Iqbal, A., Vafa, C.: Matrix models, geometric engineering and elliptic genera. hep-th/0310272Google Scholar
- 23.Labastida J.M.F., Marino M. (2001). Polynomial invariants for torus knots and topological strings. Commun. Math. Phys. 217:423 hep-th/0004196zbMATHCrossRefADSMathSciNetGoogle Scholar
- 24.Labastida, J.M.F., Marino, M.: A new point of view in the theory of knot and link invariants. math.qa/0104180Google Scholar
- 25.Murakami H., Ohtsuki T., Yamada S. (1998). HOMFLY polynomial via an invariant of colored plane graphs. Enseign. Math. 44:325zbMATHMathSciNetGoogle Scholar
- 26.Aspinwall, P.S.: D-branes on Calabi-Yau manifolds. hep-th/0403166Google Scholar
- 27.Kontsevich, M.: unpublishedGoogle Scholar
- 28.Kapustin A., Li Y. (2003). D-branes in Landau-Ginzburg models and algebraic geometry. JHEP 0312:005 hep-th/0210296CrossRefADSMathSciNetGoogle Scholar
- 29.Orlov D. (2004). Triangulated categories of singularities and D-branes in Landau-Ginzburg orbifold. Proc. Steklov Inst. Math. 246:227 math.AG/0302304MathSciNetGoogle Scholar
- 30.Brunner, I., Herbst, M., Lerche, W., Scheuner, B.: Landau-Ginzburg realization of open string TFT. hep-th/0305133Google Scholar
- 31.Ashok, S.K., Dell’Aquila, E., Diaconescu, D.E.: Fractional branes in Landau-Ginzburg orbifolds. hep-th/0401135Google Scholar
- 32.Ashok, S.K., Dell’Aquila, E., Diaconescu, D.E., Florea, B.: Obstructed D-branes in Landau-Ginzburg orbifolds. hep-th/0404167Google Scholar
- 33.Hori K., Walcher J. (2005). F-term equations near Gepner points. JHEP 0501:008 hep-th/0404196CrossRefADSMathSciNetGoogle Scholar
- 34.Brunner, I., Herbst, M., Lerche, W., Walcher, J.: Matrix factorizations and mirror symmetry: the cubic curve. hep-th/0408243Google Scholar
- 35.Mirror symmetry (Clay mathematics monographs, V. 1). In: Hori, K. et al. (ed.) American Mathematical Society (2003)Google Scholar
- 36.Schwarz, A., Shapiro, I.: Some remarks on Gopakumar–Vafa invariants. hep-th/0412119Google Scholar
- 37.Taubes C. (2001). Lagrangians for the Gopakumar–Vafa conjecture. Adv. Theor. Math. Phys. 5:139 math.DG/0201219zbMATHMathSciNetGoogle Scholar
- 38.Dunfield, N., Gukov, S., Rasmussen, J.: The superpolynomial for knot homologies. math.GT/0505662Google Scholar
- 39.Bar-Natan, D.: Some Khovanov-Rozansky Computations. http://www.math.toronto.edu/ drorbn/Misc/KhovanovRozansky/index.htmlGoogle Scholar
Copyright information
© Springer 2005