Advertisement

Letters in Mathematical Physics

, Volume 71, Issue 1, pp 1–11 | Cite as

On Decaying Rate of Quantum States

  • Shunlong Luo
  • Zhengmin Zhang
Article

Abstract

The survival amplitude of a quantum state (wave function) under the Schrödinger evolution can be expressed as the Fourier transform of the probability density induced by the wave function in the energy representation. In particular, the first zero of the survival amplitude is a fundamental quantity in characterizing the decaying rate of the quantum state. A basic problem in quantum mechanics is to study how fast the survival amplitude can fall. We present a general estimation of the decaying rate of a quantum state in terms of a moment of any order. The result is established by integrating an inequality which involves controlling trigonometric sums by power functions. This inequality is of independent interest in estimating exponential sums.

Keywords

quantum state survival amplitude Fourier transform moment time--energy uncertainty relations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bhattacharyya, K. 1983Quantum decay and Mandelstam–Tamm time energy inequalityJ. Phys. A1629932996Google Scholar
  2. Braker, H. U., Husler, J. 1991On the first zero of an empirical characteristic functionJ. Appl. Prob.28593601Google Scholar
  3. Feuerverger, A., Mureika, R. A. 1977The empirical characteristic function and its applicationsAnn. Statist.58897Google Scholar
  4. Folland, G. H., Sitaram, A. 1997J. Fourier Anal. Appl.The uncertainty principle: a mathematical survey3207236Google Scholar
  5. Gislason, E. A., Sabelli, N. H., Wood, J. W. 1985Phys. Rev. ANew form of the time–energy uncertainty relation3120782081Google Scholar
  6. Heathcote, C. R., Husler, J. 1990The first zero of an empirical characteristic functionStochastic Process. Appl.35347360Google Scholar
  7. Home, D, Whitaker, MAB 1986Reflections on the quantum Zeno paradoxJ. Phys. A1918471854Google Scholar
  8. Luo, S. L., Zhang, Z. M. 2004Estimating the first zero of a characteristic functionC. R. Acad. Sci. Paris Ser. I338203206Google Scholar
  9. Mandelstam, L., Tamm, I. 1945The uncertainty relation between energy and time in nonrelativistic quantum mechanicsJ. Phys. (Moscow)9249254Google Scholar
  10. Margolus, N., Levitin, L. B. 1998The maximum speed of dynamical evolutionPhysica D120188195Google Scholar
  11. Messiah, A.: Quantum Mechanics, Vol. I, North–Holland, Amsterdam, 1976, p. 320.Google Scholar
  12. Lloyd, S. 2000Ultimate physical limits to computationNature40610471053CrossRefGoogle Scholar
  13. Lloyd, S 2002Computational capacity of the universePhys. Rev. Lett.88237901CrossRefGoogle Scholar
  14. Pfeifer, P. 1993How fast can a quantum state change with timePhys. Rev. Lett.7033653368Google Scholar
  15. Welsh, A. H. 1986Implementing empirical characteristic characteristic function proceduresStatist. Prob. Lett.46567Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Academy of Mathematics and Systems SciencesChinese Academy of SciencesBeijingChina
  2. 2.School of Mathematics and StatisticsCarleton UniversityOttawaCanada

Personalised recommendations