Letters in Mathematical Physics

, Volume 70, Issue 2, pp 133–139 | Cite as

Non-commutative Harmonic Oscillators and the Connection Problem for the Heun Differential Equation

Article

abstract

We consider the connection problem for the Heun differential equation, which is a Fuchsian differential equation that has four regular singular points. We consider the case in which the parameters in this equation satisfy a certain set of conditions coming from the eigenvalue problem of the non-commutative harmonic oscillators. As an application, we describe eigenvalues with multiplicities greater than 1 and the corresponding odd eigenfunctions of the non-commutative harmonic oscillators. The existence of a rational or a certain algebraic solution of the Heun equation implies that the corresponding eigenvalues has multiplicities greater than 1.

Keywords

Heun’s equation monodromy algebraic solution accessory parameter apparent singularity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Heun’s differential equations. With contributions by Arscott, F. M., Slavyanov, S. Yu., Schmidt, D., Wolf, G., Maroni, P. and Duval, A.: Edited by Ronveaux, A., Oxford University Press, New York, 1995. Google Scholar
  2. Iwasaki, K., Kimura, H., Shimomura, S. and Yoshida, M.: From Gauss to Painlev\’e, a modern theory of special functions, Vieweg, Aspects Math. 16 (1991).Google Scholar
  3. Nagatou, K., Nakao, M.T., Wakayama, K. 2002Verified numerical computations for eigenvalues of non-commutative harmonic oscillatorsNumer. Funct. Anal. Optim.23633650Google Scholar
  4. Ochiai, H. 2001Non-commutative harmonic oscillators and Fuchsian ordinary differential operatorsComm. Math. Phys.217357373Google Scholar
  5. Parmeggiani, A., Wakayama, M. 2001Oscillator representations and systems of ordinary differential equationsProc. Nat. Acad. Sci. U.S.A.982630Google Scholar
  6. Parmeggiani, A. and Wakayama, M.: Non-commutative harmonic oscillators. I, II. Forum Math. 14 (2002), 539–604, 669--690.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.Department of MathematicsNagoya UniversityChikusa, NagoyaJapan

Personalised recommendations