Letters in Mathematical Physics

, Volume 70, Issue 1, pp 29–41 | Cite as

Lowering the Hartree–Fock Minimizer by Electron–Positron Pair Correlation

  • Walter H. Aschbacher
Article
  • 34 Downloads

Abstract

We prove by a simple computation that a suitable coupling to the positronic sector lowers the energy of the purely electronic minimizer of the electron–positron Hartree–Fock functional.

Dirac–Coulomb operator Dirac–Fock theory electron–positron field 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bach, V., Barbaroux, J.M., Helffer, B. and Siedentop, H.: Stability of matter for the Hartree-Fock functional of the relativistic electron-positron field, Documenta Math.3 (1998), 353–364.Google Scholar
  2. 2.
    Bach, V., Barbaroux, J.-M., Helffer, B. and Siedentop, H.: On the stability of the relativistic electron-positron field, Comm.Math.Phys. 201 (1999), 445–460.Google Scholar
  3. 3.
    Barbaroux, J.-M., Esteban, M. J. and S´er´e, E.: Some connections between Dirac-Fock and electron-positron Hartree-Fock, arXiv:math-ph/0402058.Google Scholar
  4. 4.
    Barbaroux, J.M., Farkas, E. W., Helffer, B. and Siedentop, H.: On the Hartree-Fock equations of the electron-positron field, to be published in Comm.Math.Phys., arXiv:math-ph/0404009.Google Scholar
  5. 5.
    Chaix, P. and Iracane, D.: From quantum electrodynamics to mean-field theory: I. The Bogoliubov-Dirac-Fock formalism, J.Phys.B 22(23) (1989), 3791–3814.Google Scholar
  6. 6.
    Chaix, P., Iracane, D. and Lions, P. L.: From quantum electrodynamics to mean-field theory: II. Variational stability of the vacuum of quantum electrodynamics in the mean-field approximation, J.Phys.B 22(23) (1989), 3815–3828.Google Scholar
  7. 7.
    Esteban, M. J. and S´er´e, E.: Solutions of the Dirac-Fock equations for atoms and molecules, Comm.Math.Phys. 203 (1999), 499–530.Google Scholar
  8. 8.
    Griesemer, M. and Siedentop, H.: A minimax principle for the eigenvalues in spectral gaps, J.London Math.Soc. (2) 60 (1999), 490–500.Google Scholar
  9. 9.
    Kato, T.: Perturbation Theory for Linear Operators, Springer, New York, 1995.Google Scholar
  10. 10.
    Mittleman, M. H.: Theory of relativistic effects on atoms: Configuration-space Hamiltonian, Phys.Rev.A 24(3) (1981), 1167–1175.Google Scholar
  11. 11.
    Thaller, B.: The Dirac Equation, Springer, New York, 1992.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Walter H. Aschbacher
    • 1
  1. 1.CPT-CNRS LuminyMarseille Cedex 9France

Personalised recommendations