Advertisement

Letters in Mathematical Physics

, Volume 69, Issue 1, pp 3–9 | Cite as

The Maslov Gerbe

  • Alan WeinsteinEmail author
Article

Abstract

Let Lag(E) be the Grassmannian of Lagrangian subspaces of a complex symplectic vector space E. We construct a Maslov class which generates the second integral cohomology of Lag(E), and we show that its mod 2 reduction is the characteristic class of a flat gerbe with structure group Z2. We explain the relation of this gerbe to the well-known flat Maslov line bundle with structure group Z4 over the real Lagrangian Grassmannian, whose characteristic class is the mod 4 reduction of the real Maslov class.

Keywords

Maslov class Gerbe Lagrangian subspaces 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnol’d, V.I. 1967On a characteristic class which enters in quantization conditionsFunct. Anal. Appl1113Google Scholar
  2. Brylinski, J.L. 1993Loop Spaces, Characteristic Classes and Geometric QuantizationBirkhäuserBostonGoogle Scholar
  3. Duistermaat, J.J. 1996Fourier Integral OperatorsBirkhäuserBostonGoogle Scholar
  4. Goldin R.F., Holm T.S. (2002). Real loci of symplectic reductions, preprint math.SG/0209111Google Scholar
  5. Guillemin V., Sternberg S. (1977). Geometric Asymptotics, Math. Surveys 14, Amer. Math. Soc., ProvidenceGoogle Scholar
  6. Hitchin N. Lectures on special Lagrangian submanifolds, Winter School on Mirror Symmetry, Vector Bundles and Lagrangian Submanifolds (Cambridge, MA, 1999), AMS/IP Stud. Adv. Math. 23, Amer. Math. Soc., Providence, RI, 2001, pp. 151–182.Google Scholar
  7. Hörmander, L. 1971Fourier Integral Operators IActa Math.12779183Google Scholar
  8. Maslov V.P. (1965). Theory of Perturbations and Asymptotic Methods (in Russian), Moskov. Gos. Univ., MoscowGoogle Scholar
  9. Omori, H., Maeda, Y., Miyazaki, N., Yoshioka, A. 2003Strange phenomena related to ordering problems in quantizationsJ. Lie Theory.13479508Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of CaliforniaBerkeleyU.S.A

Personalised recommendations