Mathematical Geosciences

, Volume 51, Issue 8, pp 999–1020 | Cite as

Spectral Simulation of Isotropic Gaussian Random Fields on a Sphere

  • Christian LantuéjoulEmail author
  • Xavier Freulon
  • Didier Renard


A spectral algorithm is proposed to simulate an isotropic Gaussian random field on a sphere equipped with a geodesic metric. This algorithm supposes that the angular power spectrum of the covariance function is explicitly known. Direct analytic calculations are performed for exponential and linear covariance functions. In addition, three families of covariance functions are presented where the calculation of the angular power spectrum is simplified (shot-noise random fields, Yadrenko covariance functions and solutions of certain stochastic partial differential equations). Numerous illustrative examples are given.


Spherical harmonics Angular power spectrum Yadrenko covariance functions Shot-noise random fields Chentsov model 



The support of Grant ANR-15-ASTR-0024 is gratefully acknowledged.


  1. Abramovitz M, Stegun I (1964) Handbook of mathematical functions, vol 55. National Bureau of Standards, WashingtonGoogle Scholar
  2. Chentsov N (1957) Lévy Brownian motion for several parameters and generalized white noise. Theory Probab Its Appl 2:265–266CrossRefGoogle Scholar
  3. Clarke J, Alegria A, Porcu E (2018) Regulariry properties and simulations of gaussian random fields on the sphere cross time. Electron J Stat 12:399–426CrossRefGoogle Scholar
  4. Creasey P, Lang A (2018) Fast generation of isotropic Gaussian random fields on the sphere. Monte Carlo Methods Appl 24(1):1–11CrossRefGoogle Scholar
  5. Dym H, McKean HP (2016) Fourier series an integrals. Academic Press, New YorkGoogle Scholar
  6. Emery X, Lantuéjoul C (2006) TBSIM: a computer program for conditional simulation of three dimensional Gaussian random fields via the turning bands methods. Comput Geosci 32:1615–1628CrossRefGoogle Scholar
  7. Emery X, Furrer R, Porcu E (2018) A turning bands method for simulating isotropic Gaussian random fields on the sphere. Stat Probab Lett 81:1150–1154Google Scholar
  8. Gneiting T (1999) Radial positive definite functions generated by Euclid’s hat. J Multivar Anal 69:88–119CrossRefGoogle Scholar
  9. Gneiting T (2013) Strictly and non-strictly positive definite functions on spheres. Bernoulli 19(4):1327–1349CrossRefGoogle Scholar
  10. Gradshteyn I, Ryshik I (1994) Table of integrals, series and products. Academic Press, BostonGoogle Scholar
  11. Lang A, Schwab C (2015) Isotropic Gaussian random fields on the sphere: regularity, fast simulation and stochastic partial differential equationns. Ann Appl Probab 25(6):3047–3094CrossRefGoogle Scholar
  12. Lantuéjoul C (2002) Geostatistical simulation: models and algorithms. Springer, BerlinCrossRefGoogle Scholar
  13. Lindgren F, Rue H, Lindström J (2011) An explicit link between gaussian fields and gaussian markov random fields: the stochastic partial differential equation approach. J R Stat Soc B 73:423–498CrossRefGoogle Scholar
  14. Marinucci D, Peccati G (2011) Random fields on the sphere, vol 389. London Mathematical Society, LondonCrossRefGoogle Scholar
  15. MINES-ParisTech/ARMINES (2019) RGeostats: a geostatistical package. Free download from
  16. Olver F, Lozier Boisvert R, Clark C (2010) NST Handbook of mathematical functions. National Institute of Standards and Technology, CambridgeGoogle Scholar
  17. Porcu E, Alegria A, Furrer R (2018) Modeling temporally evoving and spatially globally dependent data. Int Stat Rev 86(2):344–377CrossRefGoogle Scholar
  18. Rainville E (1960) Special functions. Chelsea Publishing Company, New YorkGoogle Scholar
  19. Schoenberg I (1942) Positive definite functions on spheres. Duke Math J 9:96–108CrossRefGoogle Scholar
  20. Shinozuka M, Jan C (1972) Digital simulation of random processes and its applications. J Sound Vib 52(3):111–128CrossRefGoogle Scholar
  21. Terdik G (2015) Angular spectra for non-Gaussian isotropic fields. Braz J Probab Stat 29(4):833–865CrossRefGoogle Scholar
  22. Yadrenko M (1983) Spectral theory of random fields. Translation Series in Mathematics and EngineeringGoogle Scholar

Copyright information

© International Association for Mathematical Geosciences 2019

Authors and Affiliations

  • Christian Lantuéjoul
    • 1
    Email author
  • Xavier Freulon
    • 1
  • Didier Renard
    • 1
  1. 1.MinesParisTechFontainebleauFrance

Personalised recommendations