Spatial Pair-Copula Model of Grade for an Anisotropic Gold Deposit

  • E. AddoJrEmail author
  • E. K. Chanda
  • A. V. Metcalfe


Copulas provide a convenient way to express multivariate distribution. In this study, pair-copula modelling is applied to a gold deposit in Western Ghana. The dataset for the gold deposit has 1500 surface soil samples on an area of 7810 ha. The distribution of the grade appears to be anisotropic and has a non-stationary random process. The objectives of the analysis are to use a spatial pair-copula to model the anisotropic gold grade and to determine regions of highest gold value within the field for a future drilling campaign. In the analysis, possible transformations of the data were compared to reduce the influence of outliers and in the case of copulas achieving a marginal uniform distribution. The anisotropy of the gold grades is described with empirical copula contour plots for each distance class and for two orthogonal directions. The non-stationarity is modelled by regression methods. The residuals from the regression are modelled with both spatial pair copulas and kriging. The different approaches are compared in terms of the mean absolute error (MAE) and root mean square error, using different proportions of the data for training and validation. The pair-copula median with kernel margins had MAE of 17.4 compared to 18.3 for log-normal kriging. An advantage of copulas is that they provide a more accurate model than kriging for the uncertainty associated with predictions.


Copula Geostatistical modelling Kriging Mining 



This research is supported by Australian Government Research Training Program Scholarship awarded to Mr. Emmanuel Addo Jr. The authors will like to thank the mining company for providing the surface soil sample datasets used in this case-study. The authors will like express their gratitude to the reviewers for their comments and suggestions, which have improved the practical application of this manuscript.

Supplementary material

11004_2018_9757_MOESM1_ESM.docx (70 kb)
Supplementary material 1 (DOCX 70 kb)


  1. Aas K, Czado C, Frigessi A, Bakken H (2009) Pair-copula constructions of multiple dependence. Insur Math Econ 44(2):182–198CrossRefGoogle Scholar
  2. AghaKouchak A (2014) Entropy–copula in hydrology and climatology. J Hydrometeorol 15(6):2176–2189CrossRefGoogle Scholar
  3. Bárdossy A (2006) Copula-based geostatistical models for groundwater quality parameters. Water Resour Res 42(11):1–12CrossRefGoogle Scholar
  4. Bárdossy A, Kundzewicz ZW (1990) Geostatistical methods for detection of outliers in groundwater quality spatial fields. J Hydrol 115(1):343–359CrossRefGoogle Scholar
  5. Bárdossy A, Li J (2008) Geostatistical interpolation using copulas. Water Resour Res 44(7):1–15CrossRefGoogle Scholar
  6. Bedford T, Cooke RM (2002) Vines: a new graphical model for dependent random variables. Ann Stat 30:1031–1068CrossRefGoogle Scholar
  7. Cherubini U, Luciano E, Vecchiato W (2004) Copula methods in finance. Wiley, HobokenCrossRefGoogle Scholar
  8. Chib S, Greenberg E (1995) Understanding the metropolis-hastings algorithm. Am Stat 49(4):327–335Google Scholar
  9. Chollete L, Heinen A, Valdesogo A (2009) Modeling international financial returns with a multivariate regime-switching copula. J Financ Econom 7:nbp014CrossRefGoogle Scholar
  10. Czado C (2010) Pair-copula constructions of multivariate copulas. In: Jaworski P, Durante F, Härdle W, Rychlik T (eds) Copula theory and its applications. Springer, Berlin, Heidelberg, pp 93–109CrossRefGoogle Scholar
  11. De Michele C, Salvadori G (2003) A generalized Pareto intensity duration model of storm rainfall exploiting 2 copulas. J Geophys Res Atmos 108(D2):ACL 15–1–11CrossRefGoogle Scholar
  12. Embrechts P, Lindskog F, McNeil A (2001) Modelling dependence with copulas. Rapport technique, Département de mathématiques, Institut Fédéral de Technologie de Zurich, ZurichGoogle Scholar
  13. Erhardt TM, Czado C, Schepsmeier U (2015) R-vine models for spatial time series with an application to daily mean temperature. Biometrics 71(2):323–332CrossRefGoogle Scholar
  14. Favre AC, El Adlouni S, Perreault L, Thiémonge N, Bobée B (2004) Multivariate hydrological frequency analysis using copulas. Water Resour Res 40(1):1–12CrossRefGoogle Scholar
  15. Genest C, Favre A-C (2007) Everything you always wanted to know about copula modeling but were afraid to ask. J Hydrol Eng 12(4):347–368CrossRefGoogle Scholar
  16. Goovaerts P (1998) Geostatistical tools for characterizing the spatial variability of microbiological and physico-chemical soil properties. Biol Fertil Soils 27(4):315–334CrossRefGoogle Scholar
  17. Goovaerts P, AvRuskin G, Meliker J, Slotnick M, Jacquez G, Nriagu J (2005) Geostatistical modeling of the spatial variability of arsenic in groundwater of southeast Michigan. Water Resour Res 41(7):1–19CrossRefGoogle Scholar
  18. Graler B (2014) Modelling skewed spatial random fields through the spatial vine copula. Spat Stat 10:87–102CrossRefGoogle Scholar
  19. Gräler B (2014) Developing spatio-temporal copulas. Ph.D. dissertation, Institute for Geoinformatics, University of MunsterGoogle Scholar
  20. Gräler B, Appel M (2015) scopula.
  21. Gräler B, Pebesma E (2011) The pair-copula construction for spatial data: a new approach to model spatial dependency. Procedia Environ Sci 7:206–211CrossRefGoogle Scholar
  22. Haff IH, Aas K, Frigessi A (2010) On the simplified pair-copula construction—simply useful or too simplistic? J Multivar Anal 101(5):1296–1310CrossRefGoogle Scholar
  23. Hu L (2006) Dependence patterns across financial markets: a mixed copula approach. Appl Financ Econ 16(10):717–729CrossRefGoogle Scholar
  24. Joe H (1996) Families of m-variate distributions with given margins and m (m − 1)/2 bivariate dependence parameters. Lecture notes-monograph series Kolkata. Institute of Mathematical Statistics, Hayward, pp 120–141Google Scholar
  25. Journel A, Alabert F (1989) Focusing on spatial connectivity of extreme-valued attributes: stochastic indicator models of reservoir heterogeneities. In: AAPG Bull (US), vol 73(CONF-890404)Google Scholar
  26. Journel AG, Alabert FG (1990) New method for reservoir mapping. J Pet Technol 42(02):212–218CrossRefGoogle Scholar
  27. Journel A, Deutsch C (1997) Rank order geostatistics: a proposal for a unique coding and common processing of diverse data. Geostat Wollongong 96(1):174–187Google Scholar
  28. Kazianka H, Pilz J (2010) Copula-based geostatistical modeling of continuous and discrete data including covariates. Stoch Env Res Risk Assess 24(5):661–673CrossRefGoogle Scholar
  29. Kazianka H, Pilz J (2011) Bayesian spatial modeling and interpolation using copulas. Comput Geosci 37(3):310–319CrossRefGoogle Scholar
  30. Kurowicka D, Cooke RM (2006) Uncertainty analysis with high dimensional dependence modelling. Wiley, HobokenCrossRefGoogle Scholar
  31. Marchant B, Saby N, Jolivet C, Arrouays D, Lark R (2011) Spatial prediction of soil properties with copulas. Geoderma 162(3):327–334CrossRefGoogle Scholar
  32. Musafer GN, Thompson MH (2016) Non-linear optimal multivariate spatial design using spatial vine copulas. Stoch Environ Res Risk Assess 31:1–20Google Scholar
  33. Musafer GN, Thompson MH, Kozan E, Wolff RC (2013) Copula-based spatial modelling of geometallurgical variables. In: The 2nd AusIMM international geometallurgy conference, Brisbane, Qld, 30 September–2 October 2013Google Scholar
  34. Nagler T (2017) kdecopula: Kernel smoothing for bivariate copula densities. pp 1–21. R package version 0.9.0.
  35. Nelsen R (2006) An introduction to copulas. Lecture notes in statistics. Springer, New YorkGoogle Scholar
  36. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2016) _nlme: linear and nonlinear mixed effects models_. R package version 3.1-128.
  37. Rockafellar RT, Uryasev S (2002) Conditional value-at-risk for general loss distributions. J Bank Finance 26(7):1443–1471CrossRefGoogle Scholar
  38. Rodriguez JC (2007) Measuring financial contagion: a copula approach. J Empir Finance 14(3):401–423CrossRefGoogle Scholar
  39. Rossi RE, Mulla DJ, Journel AG, Franz EH (1992) Geostatistical tools for modeling and interpreting ecological spatial dependence. Ecol Monogr 62(2):277–314CrossRefGoogle Scholar
  40. Sklar A (1959) Fonctions deépartion à n dimensions et leurs marges. Publications de l’Institut de Statistique de l’Université de Paris. l’Université de Paris, ParisGoogle Scholar

Copyright information

© International Association for Mathematical Geosciences 2018

Authors and Affiliations

  1. 1.School of Civil, Environmental and Mining EngineeringUniversity of AdelaideAdelaideAustralia
  2. 2.School of Mathematical SciencesUniversity of AdelaideAdelaideAustralia

Personalised recommendations