Advertisement

Mathematical Geosciences

, Volume 46, Issue 2, pp 187–204 | Cite as

Addressing Conditioning Data in Multiple-Point Statistics Simulation Algorithms Based on a Multiple Grid Approach

  • Julien StraubhaarEmail author
  • Duccio Malinverni
Special Issue

Abstract

Multiple-point statistics (MPS) allows simulations reproducing structures of a conceptual model given by a training image (TI) to be generated within a stochastic framework. In classical implementations, fixed search templates are used to retrieve the patterns from the TI. A multiple grid approach allows the large-scale structures present in the TI to be captured, while keeping the search template small. The technique consists in decomposing the simulation grid into several grid levels: One grid level is composed of each second node of the grid level one rank finer. Then each grid level is successively simulated by using the corresponding rescaled search template from the coarse level to the fine level (the simulation grid itself). For a conditional simulation, a basic method (as in snesim) to honor the hard data consists in assigning the data to the closest nodes of the current grid level before simulating it. In this paper, another method (implemented in impala) that consists in assigning the hard data to the closest nodes of the simulation grid (fine level), and then in spreading them up to the coarse grid by using simulations based on the MPS inferred from the TI is presented in detail. We study the effect of conditioning and show that the first method leads to systematic biases depending on the location of the conditioning data relative to the grid levels, whereas the second method allows for properly dealing with conditional simulations and a multiple grid approach.

Keywords

Multiple-point statistics Multiple grid approach Conditional simulation 

Notes

Acknowledgements

The authors would like to thank Philippe Renard for his helpful advice.

References

  1. Alcolea A, Renard P (2010) Blocking moving window algorithm: conditioning multiple-point simulations to hydrogeological data. Water Resour Res 46:W08511. doi: 10.1029/2009WR007943 Google Scholar
  2. Arpat GB, Caers J (2007) Conditional simulation with patterns. Math Geol 39(2):177–203. doi: 10.1007/s11004-006-9075-3 CrossRefGoogle Scholar
  3. Caers J (2003) History matching under training-image-based geological model constraints. SPE J 8(3):218–226 CrossRefGoogle Scholar
  4. Caers J, Hoffman T (2006) The probability perturbation method: a new look at Bayesian inverse modeling. Math Geol 38(1):81–100. doi: 10.1007/s11004-005-9005-9 CrossRefGoogle Scholar
  5. Cordua KS, Hansen TM, Mosegaard K (2012) Monte Carlo full-waveform inversion of crosshole gpr data using multiple-point geostatistical a priori information. Geophysics 77(2):H19–H31. doi: 10.1190/GEO2011-0170.1 CrossRefGoogle Scholar
  6. Guardiano F, Srivastava R (1993) Multivariate geostatistics: beyond bivariate moments. In: Soares A (ed) Geostatistics Troia, vol 1. Kluwer Academic, Dordrecht, pp 133–144 CrossRefGoogle Scholar
  7. Hu LY, Zhao Y, Liu Y, Scheepens C, Bouchard A (2013) Updating multipoint simulations using the ensemble Kalman filter. Comput Geosci 51:7–15. doi: 10.1016/j.cageo.2012.08.020 CrossRefGoogle Scholar
  8. Huysmans M, Dassargues A (2012) Modeling the effect of clay drapes on pumping test response in a cross-bedded aquifer using multiple-point geostatistics. J Hydrol 450:159–167. doi: 10.1016/j.jhydrol.2012.05.014 CrossRefGoogle Scholar
  9. Jafarpour B, Khodabakhshi M (2011) A probability conditioning method (PCM) for nonlinear flow data integration into multipoint statistical facies simulation. Math Geosci 43(2):133–164. doi: 10.1007/s11004-011-9316-y CrossRefGoogle Scholar
  10. Lange K, Frydendall H, Cordua KS, Hansen TM, Melnikova Y, Mosegaard K (2012) A frequency matching method: solving inverse problems by use of geologically realistic prior information. Math Geosci 44(7):783–803. doi: 10.1007/s11004-012-9417-2 CrossRefGoogle Scholar
  11. Mariethoz G, Renard P, Caers J (2010a) Bayesian inverse problem and optimization with iterative spatial resampling. Water Resour Res 46:W11530. doi: 10.1029/2010WR009274 Google Scholar
  12. Mariethoz G, Renard P, Straubhaar J (2010b) The direct sampling method to perform multiple-point geostatistical simulations. Water Resour Res 46:W11536. doi: 10.1029/2008WR007621 Google Scholar
  13. Remy N, Boucher A, Wu J (2009) Applied geostatistics with SGeMS. A user’s guide. Cambridge University Press, Cambridge CrossRefGoogle Scholar
  14. Renard P, Straubhaar J, Caers J, Mariethoz G (2011) Conditioning facies simulations with connectivity data. Math Geosci 43(8):879–903. doi: 10.1007/s11004-011-9363-4 CrossRefGoogle Scholar
  15. Ronayne MJ, Gorelick SM, Caers J (2008) Identifying discrete geologic structures that produce anomalous hydraulic response: an inverse modeling approach. Water Resour Res 44(8):W08426. doi: 10.1029/2007WR006635 Google Scholar
  16. Saripally I, Caers J (2008) Evaluating data conditioning accuracy of MPS algorithms and the impact on flow modeling. Paper presented at 21th SCRF meeting, Stanford University, May 8–9, 2008 Google Scholar
  17. Straubhaar J, Renard P, Mariethoz G, Froidevaux R, Besson O (2011) An improved parallel multiple-point algorithm using a list approach. Math Geosci 43(3):305–328. doi: 10.1007/s11004-011-9328-7 CrossRefGoogle Scholar
  18. Straubhaar J, Walgenwitz A, Renard P (2013) Parallel multiple-point statistics algorithm based on list and tree structures. Math Geosci 45(2):131–147. doi: 10.1007/s11004-012-9437-y CrossRefGoogle Scholar
  19. Strebelle S (2002) Conditional simulation of complex geological structures using multiple-points statistics. Math Geol 34(1):1–21. doi: 10.1023/A:1014009426274 CrossRefGoogle Scholar
  20. Tahmasebi T, Hezarkhani A, Sahimi M (2012) Multiple-point geostatistical modeling based on the cross-correlation functions. Comput Geosci 16(3):779–797. doi: 10.1007/s10596-012-9287-1 CrossRefGoogle Scholar
  21. Tran TT (1994) Improving variogram reproduction on dense simulation grids. Comput Geosci 20(7–8):1161–1168. doi: 10.1016/0098-3004(94)90069-8 CrossRefGoogle Scholar
  22. Wu J, Zhang T, Journel A (2008) Fast filtersim simulation with score-based distance. Math Geosci 40(7):773–788. doi: 10.1007/s11004-008-9157-5 CrossRefGoogle Scholar
  23. Zhang T, Switzer P, Journel AG (2006) Filter-based classification of training image patterns for spatial simulation. Math Geol 38(1):63–80. doi: 10.1007/s11004-005-9004-x CrossRefGoogle Scholar
  24. Zhou H, Gomez-Hernandez JJ, Franssen H-JH, Li L (2011) An approach to handling non-gaussianity of parameters and state variables in ensemble Kalman filtering. Adv Water Resour 34(7):844–864. doi: 10.1016/j.advwatres.2011.04.014 CrossRefGoogle Scholar

Copyright information

© International Association for Mathematical Geosciences 2013

Authors and Affiliations

  1. 1.The Centre for Hydrogeology and Geothermics (CHYN)University of NeuchâtelNeuchâtelSwitzerland
  2. 2.École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations