Mathematical Geosciences

, Volume 44, Issue 5, pp 619–634 | Cite as

Benford’s Law in Time Series Analysis of Seismic Clusters

  • Gianluca SottiliEmail author
  • Danilo M. Palladino
  • Biagio Giaccio
  • Paolo Messina


Benford’s analysis is applied to the recurrence times of approximately 17,000 seismic events in different geological contexts of Italy over the last 6 years, including the Mt. Etna volcanic area and the seismic series associated with the destructive M w 6.3, 2009 L’Aquila earthquake. A close conformity to Benford’s law and a power-law probability distribution for the recurrence times of consecutive events is found, as typical of random multiplicative processes. The application of Benford’s law to the recurrence event times in seismic series of specific seismogenic regions represents a novel approach, which enlarges the occurrence and relevance of Benford-like asymmetries, with implications on the physics of natural systems approaching a power law behaviour. Moreover, we propose that the shift from a close conformity of Benford’s law to Brownian dynamics, observed for time separations among non-consecutive events in the study seismic series, may be ruled by a periodical noise factor, such as the effects of Earth tides on seismicity tuning.


Seismic hazard Tidal frequencies Random multiplicative process Random additive process 



We are grateful to the Editor-in-Chief, R. Dimitrakopoulos, and two anonymous referees for their helpful comments to the manuscript.


  1. Beeler NM, Lockner DA (2003) Why earthquakes correlate weakly with the solid Earth tides: effects of periodic stress on the rate and probability of earthquake occurrence. J Geophys Res 108(B8):2391. doi: 10.1029/2001JB001518 CrossRefGoogle Scholar
  2. Benford F (1938) The law of anomalous numbers. Proc Am Philos Soc 78:551–572 Google Scholar
  3. Boncio P, Lavecchia G, Pace B (2004) Defining a model of 3D seismogenic source for seismic hazard assessment applications: the case of central Apennines (Italy). J Seismol 8:407–425 CrossRefGoogle Scholar
  4. CNR-PFG (1987) Neotectonic map of Italy. Quaderni de La Ricerca Scientifica, 114 Google Scholar
  5. Cochran ES, Vidale JE (2007) Comment on “Tidal synchronicity of the 26 December 2004 Sumatran earthquake and its aftershocks” by R.G.M. Crockett et al. Geophys Res Lett 34:L04302. doi: 10.1029/2006GL028639 CrossRefGoogle Scholar
  6. CPTI04 (2004) Catalogo Parametrico dei Terremoti Italiani, version 2004. CPTI Working Group, INGV, Bologna.
  7. Crockett RGM, Gillmore GK, Phillips PS, Gilbertson DD (2006) Tidal synchronicity of the 26 December 2004 Sumatran earthquake and its aftershocks. Geophys Res Lett 33:L19302. doi: 10.1029/2006GL027074 CrossRefGoogle Scholar
  8. D’Agostino N, Mantenuto S, D’Anastasio E, Giuliani R, Mattone M, Calcaterra S, Gambino P, Bonci L (2011) Evidence for localized active extension in the central Apennines (Italy) from global positioning system observations. Geology 39:291–294 CrossRefGoogle Scholar
  9. D’Alessandro A, Cecere G, Amato A, Selvaggi G (2011). Improving the location performance of a seismic network through the SNES method. Geophys Res Abstr 13:EGU2011–11252, 2011 Google Scholar
  10. Emter D (1997) Tidal triggering of earthquakes and volcanic events. In: Wilhelm H, Zürn W, Wenzel H-G (eds) Tidal phenomena. Springer, Berlin, pp 293–309 CrossRefGoogle Scholar
  11. Falcucci E, Gori S, Peronace E, Fubelli G, Moro M, Saroli M, Giaccio B, Messina P, Naso G, Scardia G, Sposato A, Voltaggio M, Galli P, Galadini F (2009) The Paganica fault and surface coseismic ruptures caused by the 6 April 2009 earthquake (L’Aquila, Central Italy). Seismol Res Lett 80:940–950 CrossRefGoogle Scholar
  12. Galadini F, Galli P (2000) Active tectonics in the Central Apennines (Italy)—input data for seismic hazard assessment. Natural Hazards 22:225–270 CrossRefGoogle Scholar
  13. Galli P, Galadini F, Pantosti D (2008) Twenty years of paleoseismology in Italy. Earth-Sci Rev 88:89–117 CrossRefGoogle Scholar
  14. Galli P, Giaccio B, Messina P (2010) The 2009 central Italy earthquake seen through 0.5 Myr-long tectonic history of the L’Aquila faults system. Quat Sci Rev 29:3768–3789 CrossRefGoogle Scholar
  15. Geyer A, Martì J (2012) Applying Benford’s law to volcanology. Geology 40:331–334 CrossRefGoogle Scholar
  16. Glasby GP, Kasahara J (2001) Influence of tidal effects on the periodicity of earthquake activity in diverse geological settings with particular emphasis on submarine hydrothermal systems. Earth-Sci Rev 52:261–297 CrossRefGoogle Scholar
  17. Gorshkov AI, Panza GF, Soloviev AA, Aoudia A (2002) Morphostructural zonation and preliminary recognition of seismogenic nodes around the Adria margin in peninsular Italy and Sicily. J Seismol Earthq Eng 4:1–24 Google Scholar
  18. Hartzell S, Heaton T (1989) The fortnightly tide and the tidal triggering of earthquakes. Bull Seismol Soc Am 79:1282–1286 Google Scholar
  19. Hirata T, Imoto M (1991) Multifractal analysis of spatial distribution of microearthquakes in the Kanto region. Geophys J Int 107:155–162 CrossRefGoogle Scholar
  20. INGV (2010). ©ISIDe Working Group, Italian Seismological Instrumental and parametric database:
  21. Kasahara J (2002) Tides, earthquakes, and volcanoes. Science 297:348–349 CrossRefGoogle Scholar
  22. Kitada S (2006) Power-law distributions in random multiplicative processes with non-Gaussian colored multipliers. Phys A 370:539–552 CrossRefGoogle Scholar
  23. Klein FW (1976) Earthquake swarms and the semidiurnal solid earth tide. Geophys J R Astr Soc 45:245–295 CrossRefGoogle Scholar
  24. Kobayashi N, Sasaki Y, Moriyama O, Matsushita S, Matsushita M (2006) Nonlinear phenomena in complex systems empirical studies of random multiplicative stochastic processes: revisit to lognormals. Nonlinear Phenom Complex Syst 9:276–282 Google Scholar
  25. Lockner DA, Beeler NM (1999) Premonitory slip and tidal triggering of earthquakes. J Geophys Res 104(20):133–151 Google Scholar
  26. Mandelbrot BB (1982) The fractal geometry of nature. Freeman, New York Google Scholar
  27. McNutt SR, Beavan RJ (1981) Volcanic earthquakes at Pavlof volcano correlated with solid earth tide. Nature 294:615–618 CrossRefGoogle Scholar
  28. Melchior P (1983). The tides of the planet Earth. Pergamon, New York, 641 pp Google Scholar
  29. Molchan G (2005) Interevent time distribution in seismicity: a theoretical approach. Pure Appl Geophys 162:1135–1150. doi: 10.1007/s00024-004-2664-5 CrossRefGoogle Scholar
  30. Neuberg J (2000) External modulation of volcanic activity. Geophys J Int 142:232–240 CrossRefGoogle Scholar
  31. Nigrini MJ, Miller JS (2007) Benford’s law applied to hydrology data-results and relevance to other geophysical data. Math Geol 39:469–490 CrossRefGoogle Scholar
  32. Pietronero L, Tosatti E, Tosatti V, Vespignani A (2001) Explaining the uneven distribution of numbers in nature: the laws of Benford and Zipf. Phys A 293:297–304 CrossRefGoogle Scholar
  33. Pinkham RS (1961) On the distribution of first significant digits. Ann Math Stat 32(4):1223–1230 CrossRefGoogle Scholar
  34. Riguzzi F, Panza G, Varga P, Doglioni C (2010) Can Earth’s rotation and tidal despinning drive plate tectonics? Tectonophysics 484:60–73 CrossRefGoogle Scholar
  35. Roberts GP, Michetti AM (2004) Spatial and temporal variations in growth rates along active normal fault systems: an example from the Lazio-Abruzzo Apennines, central Italy. J Struct Geol 26:339–376 CrossRefGoogle Scholar
  36. Saichev A, Sornette D (2006) Universal distribution of interearthquake times explained. Phys Rev Lett 97:078501 CrossRefGoogle Scholar
  37. Saichev A, Sornette D (2007) Theory of earthquake recurrence times. J Geophys Res 112:B04313. doi: 10.1029/2006JB004536 CrossRefGoogle Scholar
  38. Sambridge M, Tkalčić H, Jackson A (2010) Benford’s law in the natural sciences. Geophys Res Lett 37:L22301. doi: 10.1029/2010GL044830 CrossRefGoogle Scholar
  39. Sambridge M, Tkalčić H, Arroucau P (2011) Benford’s law of first digits: from mathematical curiosity to change detector. Asia Pacific Math News Lett 1(4):1–6 Google Scholar
  40. Scholz CH (2003) Good tiding. Nature 425:670–671 CrossRefGoogle Scholar
  41. Sottili G, Palladino DM (2012) Tidal modulation of eruptive activity at open-vent volcanoes: evidence from Stromboli, Italy. Terra Nova. doi: 10.1111/j.1365-3121.2012.01059.x Google Scholar
  42. Sottili G, Martino S, Palladino DM, Paciello A, Bozzano F (2007) Effects of tidal stresses on volcanic activity at Mount Etna, Italy. Geophys Res Lett 34:L01311. doi: 10.1029/2006GL028190 CrossRefGoogle Scholar
  43. Tanaka S (2012) Tidal triggering of earthquakes prior to the 2011 Tohoku–Oki earthquake (M w 9.1). Geophys Res Lett. doi: 10.1029/2012GL051179 Google Scholar
  44. Tsuruoka H, Ohtake M, Sato H (1995) Statistical test of the tidal triggering of earthquakes: contribution of the ocean tide loading effect. Geophys J Int 122:183–194 CrossRefGoogle Scholar
  45. Vidale JE, Agnew DC, Johnston MJS, Oppenheimer DH (1998) Absence of earthquakes correlation with Earth tides: an indication of high preseismic fault stress rate. J Geophys Res 103(24):567–572 Google Scholar
  46. Wilcock WSD (2001) Tidal triggering of microearthquakes on the Juan de Fuca Ridge. Geophys Res Lett 28:3999–4002 CrossRefGoogle Scholar

Copyright information

© International Association for Mathematical Geosciences 2012

Authors and Affiliations

  • Gianluca Sottili
    • 1
    Email author
  • Danilo M. Palladino
    • 2
  • Biagio Giaccio
    • 1
  • Paolo Messina
    • 1
  1. 1.Istituto di Geologia Ambientale e Geoingegneria-CNRMonterotondo StazioneItaly
  2. 2.Dipartimento di Scienze della TerraSapienza-Università di RomaRomeItaly

Personalised recommendations