Mathematical Geosciences

, Volume 44, Issue 2, pp 169–185

Pattern Recognition in a Bimodal Aquifer Using the Normal-Score Ensemble Kalman Filter

  • Haiyan Zhou
  • Liangping Li
  • Harrie-Jan Hendricks Franssen
  • J. Jaime Gómez-Hernández
Special Issue

Abstract

The ensemble Kalman filter (EnKF) is now widely used in diverse disciplines to estimate model parameters and update model states by integrating observed data. The EnKF is known to perform optimally only for multi-Gaussian distributed states and parameters. A new approach, the normal-score EnKF (NS-EnKF), has been recently proposed to handle complex aquifers with non-Gaussian distributed parameters. In this work, we aim at investigating the capacity of the NS-EnKF to identify patterns in the spatial distribution of the model parameters (hydraulic conductivities) by assimilating dynamic observations in the absence of direct measurements of the parameters themselves. In some situations, hydraulic conductivity measurements (hard data) may not be available, which requires the estimation of conductivities from indirect observations, such as piezometric heads. We show how the NS-EnKF is capable of retrieving the bimodal nature of a synthetic aquifer solely from piezometric head data. By comparison with a more standard implementation of the EnKF, the NS-EnKF gives better results with regard to histogram preservation, uncertainty assessment, and transport predictions.

Keywords

Large heterogeneity Parameter identification Non-multi-Gaussian Uncertainty Groundwater modeling Hard data 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arulampalam MS, Maskell S, Gordon N, Clapp T (2002) A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans Signal Process 50(2):174–188 CrossRefGoogle Scholar
  2. Bertino L, Evensen G, Wackernagel H (2003) Sequential data assimilation techniques in oceanography. Int Stat Rev 71(2):223–241 CrossRefGoogle Scholar
  3. Burgers G, Jan van Leeuwen P, Evensen G (1998) Analysis scheme in the ensemble Kalman filter. Mon Weather Rev 126(6):1719–1724 CrossRefGoogle Scholar
  4. Carrera J, Neuman SP (1986b) Estimation of aquifer parameters under transient and steady state conditions: 2. Uniqueness, stability, and solution algorithms. Water Resour Res 22(2):211–227 CrossRefGoogle Scholar
  5. Chen Y, Zhang D (2006) Data assimilation for transient flow in geologic formations via ensemble Kalman filter. Adv Water Resour 29:1107–1122 CrossRefGoogle Scholar
  6. Delhomme JP (1979) Spatial variability and uncertainty in groundwater flow parameters: a geostatistical approach. Water Resour Res 15(2):269–280 CrossRefGoogle Scholar
  7. Evensen G (1994) Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J Geophys Res 99(C5):10143–10162 CrossRefGoogle Scholar
  8. Evensen G (2007) Data assimilation: the ensemble Kalman filter. Springer, Berlin, 279 pp Google Scholar
  9. Fernàndez-Garcia D, Illangasekare T, Rajaram H (2005) Differences in the scale dependence of dispersivity and retardation factors estimated from forced-gradient and uniform flow tracer tests in three-dimensional physically and chemically heterogeneous porous media. Water Resour Res 41(3):W03012 CrossRefGoogle Scholar
  10. Gómez-Hernández JJ, Journel AG (1993) Joint sequential simulation of multi-Gaussian fields. In: Soares A (ed) Geostatistics Tróia ’92, vol 1. Kluwer Academic, Dordrecht, pp 85–94 CrossRefGoogle Scholar
  11. Gómez-Hernández JJ, Wen XH (1998) To be or not to be multi-Gaussian? A reflection on stochastic hydrogeology. Adv Water Resour 21(1):47–61 CrossRefGoogle Scholar
  12. Gu Y, Oliver DS (2006) The ensemble Kalman filter for continuous updating of reservoir simulation models. J Energy Resour Technol 128:79–87 CrossRefGoogle Scholar
  13. Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, the U.S. geological survey modular ground-water model—user guide to modularization concepts and the ground-water flow process. Tech rep. Open-File Report 00-92, U.S. Department of the Interior, U.S. Geological Survey. Reston, Virginia, 121 pp Google Scholar
  14. Hendricks Franssen HJ, Kinzelbach W (2008) Real-time groundwater flow modeling with the Ensemble Kalman Filter: joint estimation for states and parameters and the filter inbreeding problem. Water Resour Res 44:W09408 CrossRefGoogle Scholar
  15. Hendricks Franssen HJ, Kinzelbach W (2009) Ensemble Kalman filtering versus sequential self-calibration for inverse modelling of dynamic groundwater flow systems. J Hydrol 365(3–4):261–274 CrossRefGoogle Scholar
  16. Houtekamer PL, Mitchell HL (2001) A sequential ensemble Kalman filter for atmospheric data assimilation. Mon Weather Rev 129:123–137 CrossRefGoogle Scholar
  17. Journel AG, Deutsch CV (1993) Entropy and spatial disorder. Math Geol 25(3):329–355 CrossRefGoogle Scholar
  18. Li L, Zhou H, Gómez-Hernández JJ (2011a) A comparative study of three-dimensional hydraulic conductivity upscaling at the macrodispersion experiment (MADE) site, Columbus air force base, Mississippi (USA). J Hydrol 404(3–4):278–293 CrossRefGoogle Scholar
  19. Li L, Zhou H, Gómez-Hernández JJ (2011b) Transport upscaling using multi-rate mass transfer in three-dimensional highly heterogeneous porous media. Adv Water Resour 34(4):478–489 CrossRefGoogle Scholar
  20. Moradkhani H, Sorooshian S, Gupta HV, Houser PR (2005) Dual state-parameter estimation of hydrological models using ensemble Kalman filter. Adv Water Resour 28:135–147 CrossRefGoogle Scholar
  21. Naevdal G, Johnsen L, Aanonsen S, Vefring E (Mar. 2005) Reservoir monitoring and continuous model updating using ensemble Kalman filter. SPE J 10(1):66–74 Google Scholar
  22. Pardo-Igúzquiza E, Dowd PA (2003) CONNEC3D: a computer program for connectivity analysis of 3D random set models. Comput Geosci 29:775–785 CrossRefGoogle Scholar
  23. Schöniger A, Nowak W, Hendricks Franssen HJ (2011) Parameter estimation by ensemble Kalman filters with transformed data: approach and application to hydraulic tomography. Water Resour Res (submitted) Google Scholar
  24. Simon E, Bertino L (2009) Application of the Gaussian anamorphosis to assimilation in a 3-D coupled physical-ecosystem model of the North Atlantic with the EnKF: a twin experiment. Ocean Sci 5:495–510 CrossRefGoogle Scholar
  25. Stauffer D, Aharony A (1994) Introduction to percolation theory. Taylor and Francis, London. 181 pp Google Scholar
  26. Strébelle S 2000. Sequential simulation drawing structures from training images. PhD thesis, Stanford University. 187 pp Google Scholar
  27. Strebelle S (2002) Conditional simulation of complex geological structures using multiple-point statistics. Math Geol 34(1):1–21 CrossRefGoogle Scholar
  28. Wen X, Chen W (2006) Real-time reservoir model updating using ensemble Kalman filter: the confirming approach. SPE J 11(4):431–442 Google Scholar
  29. Wen X, Chen W (2007) Some practical issues on real time reservoir updating using ensemble Kalman filter. SPE J 12(2):156–166 Google Scholar
  30. Zhou H, Gómez-Hernández JJ, Hendricks Franssen H-J, Li L (2011) An approach to handling non-gaussianity of parameters and state variables in ensemble Kalman filtering. Adv Water Resour 34(7):844–864 CrossRefGoogle Scholar
  31. Zinn B, Harvey C (2003) When good statistical models of aquifer heterogeneity go bad: a comparison of flow, dispersion, and mass transfer in connected and multivariate Gaussian hydraulic conductivity fields. Water Resour Res 39(3):1051 CrossRefGoogle Scholar

Copyright information

© International Association for Mathematical Geosciences 2011

Authors and Affiliations

  • Haiyan Zhou
    • 1
  • Liangping Li
    • 1
  • Harrie-Jan Hendricks Franssen
    • 2
  • J. Jaime Gómez-Hernández
    • 1
  1. 1.Grupo de Hidrogeología, Departamento de Ingeniería Hidraulica y Medio AmbienteUniversitat Politècnica de ValènciaValènciaSpain
  2. 2.Agrosphere, IBG-3Forschungszentrum Jülich GmbHJülichGermany

Personalised recommendations