Advertisement

Mathematical Geosciences

, Volume 43, Issue 6, pp 735–740 | Cite as

Variogram or Semivariogram? Variance or Semivariance? Allan Variance or Introducing a New Term?

  • Martin Bachmaier
  • Matthias Backes
Short Note

Abstract

There is a confusing situation in geostatistical literature: Some authors write variogram, and some authors write semivariogram. Based on a formula for the empirical variance that relates to pairwise differences, it is shown that the values depicted in a variogram are entire variances of observations at a given spatial separation (lag). Therefore, they should not be called semivariances, and the term semivariogram should also be avoided. To name a variogram value, we suggest the use of the term gammavariance instead of the misleading semivariance.

Keywords

Structure function Variogram Semivariogram Variance Semivariance Allan variance Gammavariance Spatial variability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allan DW (1986) Should the classical variance be used as a basic measure in standards metrology? IEEE Trans Instrum Meas 36(2):646–654 Google Scholar
  2. Allan DW (1988) Time and frequency (time-domain) characterization, estimation, and prediction of precision clocks and oscillators. IEEE Trans Ultrason Ferroelectr Freq Control 34(6):647–654 CrossRefGoogle Scholar
  3. Arpaia P, Daponte P, Rapuano S (2003) Characterization of digitizer timebase jitter by means of the Allan variance. Comput Stand Interfaces 25(1):15–22 CrossRefGoogle Scholar
  4. Auerswald K, Wittmer MHOM, Männel TT, Bai YF, Schäufele R, Schnyder H (2009) Large regional scale-variation in C3/C4 distribution pattern of Inner Mongolia steppe is revealed by grazer wool carbon isotope composition. Biogeosciences 6(1):795–805 CrossRefGoogle Scholar
  5. Bachmaier M (2007) Using a robust variogram to find an adequate butterfly neighborhood size for one-step yield mapping using robust fitting paraboloid cones. Precis Agric 8(1/2):75–93 CrossRefGoogle Scholar
  6. Bachmaier M (2010) On the misleading use of the term ‘semivariance’ in recent articles. Rapid Commun Mass Spectrom 24(7):1111 CrossRefGoogle Scholar
  7. Bachmaier M, Backes M (2008) Variogram or semivariogram?—understanding the variances in a variogram. Precis Agric 9(3):173 –175 CrossRefGoogle Scholar
  8. Burrough PA, McDonnell RA (1998) Principles of geographical information systems. Spatial information systems and geostatistics. Oxford University Press, Oxford Google Scholar
  9. Cressie NAC (1991) Statistics for spatial data. Wiley, New York Google Scholar
  10. Gandin LS (1963) Objective analysis of meteorological fields. Gidrometeorologicheskoe Izdatel’stvo (GIMIZ), Leningrad (1965 ed. available from the Israel Program for Scientific Translations, Jerusalem) Google Scholar
  11. Gneiting T, Sasvári Z, Schlather M (2001) Analogies and correspondences between variograms and covariance functions. Adv Appl Probab 33(3):617–630 CrossRefGoogle Scholar
  12. Goovaerts P (1997) Geostatistics for natural resource evaluation. Oxford University Press, Oxford Google Scholar
  13. Greenhall CA (1997) The third-difference approach to modified Allan variance. IEEE Trans Instrum Meas 46(3):696–703 CrossRefGoogle Scholar
  14. Gringarten E, Deutsch CV (2001) Teacher’s aide—variogram interpretation and modeling. Math Geol 33(4):507–534 CrossRefGoogle Scholar
  15. Isaaks EH, Srivastava RM (1989) An introduction to applied geostatistics. Oxford University Press, Oxford Google Scholar
  16. Journel AG, Huijbregts CJ (1978) Mining geostat. Academic Press, London Google Scholar
  17. Jowett GH (1952) The accuracy of systematic sampling from conveyor belts. Appl Stat 1(1):50–59 CrossRefGoogle Scholar
  18. Kolmogorov AN (1941) The local structure of turbulence in an incompressible fluid at very large Reynolds numbers. Dokl Akad Nauk SSSR 30(4):301–305 Google Scholar
  19. Matheron G (1965) Les variables régionalisées et leur estimation. Masson, Paris Google Scholar
  20. Mustapha H, Dimitrakopoulos R (2010) A new approach for geological recognition using high-order spatial cumulants. Comput Geosci 36(3):313–334 CrossRefGoogle Scholar
  21. Olea RA (1999) Geostatistics for engineers and earth scientists. Kluwer Academic, Boston Google Scholar
  22. Stein ML (1999) Interpolation of spatial data: some theory for kriging. Springer, Berlin CrossRefGoogle Scholar
  23. Wackernagel H (2003) Multivariate geostatistics. Springer, Berlin Google Scholar
  24. Webster R, Oliver MA (2007) Geostatistics for environmental scientists. Wiley, New York CrossRefGoogle Scholar
  25. Wittmer MHOM, Auerswald K, Bai YF, Schäufele R, Schnyder H (2010) Changes in the abundance of C3/C4 species of Inner Mongolia grassland: evidence from isotopic composition of soil and vegetation. Glob Change Biol 16(2):605–616 CrossRefGoogle Scholar
  26. Worboys MF (1995) GIS—a computing perspective. Taylor & Francis, London Google Scholar
  27. Yaglom AM (1957) Some classes of random fields in n-dimensional space, related to stationary random processes. Theory Probab Appl 2(3):273–320 CrossRefGoogle Scholar

Copyright information

© International Association for Mathematical Geosciences 2011

Authors and Affiliations

  1. 1.Agricultural Systems EngineeringTechnische Universität MünchenFreising-WeihenstephanGermany
  2. 2.Institut für Kartographie und GeoinformationRheinische Friedrich-Wilhelms-Universität BonnBonnGermany

Personalised recommendations