Mathematical Geosciences

, Volume 43, Issue 5, pp 505–519 | Cite as

On Selection of Analog Volcanoes

  • Armando Rodado
  • Mark BebbingtonEmail author
  • Alasdair Noble
  • Shane Cronin
  • Gill Jolly


Estimating the occurrence probability of volcanic eruptions with VEI ≥3 is challenging in several aspects, including data scarcity. A suggested approach has been to use a simple model, where eruptions are assumed to follow a Poisson process, augmenting the data used to estimate the eruption onset rate with that from several analog volcanoes. In this model the eruption onset rate is a random variable that follows a gamma distribution, the parameters of which are estimated by an empirical Bayes analysis. The selection of analog volcanoes is an important step that needs to be explicitly considered in this model, as we show that the analysis is not always feasible due to the required over-dispersion in the resulting negative binomial distribution for the numbers of eruptions. We propose a modification to the method which allows for both over-dispersed and under-dispersed data, and permits analog volcanoes to be chosen on other grounds than mathematical tractability.


Empirical Bayes Conway–Maxwell–Poisson process Information gain 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bebbington MS (2005) Information gains for stress release models. Pure Appl Geophys 162:2299–2319 CrossRefGoogle Scholar
  2. Bebbington MS (2007) Identifying volcanic regimes using hidden Markov models. Geophys J Int 171:921–942 CrossRefGoogle Scholar
  3. Bebbington MS (2008) Incorporating the eruptive history in a stochastic model for volcanic eruptions. J Volcanol Geotherm Res 175:325–333 CrossRefGoogle Scholar
  4. Bebbington MS (2010) Trends and clustering in the onsets of volcanic eruptions. J Geophys Res 115:B01203. doi: 10.1029/2009JB006581 CrossRefGoogle Scholar
  5. Bebbington MS, Lai CD (1996a) On nonhomogeneous models for volcanic eruptions. Math Geol 28:585–600 CrossRefGoogle Scholar
  6. Bebbington MS, Lai CD (1996b) Statistical analysis of New Zealand volcanic occurrence data. J Volcanol Geotherm Res 74:101–110 CrossRefGoogle Scholar
  7. Conway RW, Maxwell WI (1961) A queueing model with state dependent service rate. J Ind Eng 12:132–136 Google Scholar
  8. De la Cruz-Reyna S (1991) Poisson-distributed patterns of explosive eruptive activity. Bull Volcanol 54:57–67 CrossRefGoogle Scholar
  9. Harford CL, Sparks RSJ, Fallick AE (2003) Degassing at the Soufriere Hills Volcano, Montserrat, recorded in matrix glass compositions. J Pet 44:1503–1523 CrossRefGoogle Scholar
  10. Ho CH (1991) Nonhomogeneous Poisson model for volcanic eruptions. Math Geol 23:167–173 CrossRefGoogle Scholar
  11. Kadane JB, Shmueli G, Minka TP, Borle S, Boatwright P (2006) Conjugate analysis of the Conway–Maxwell–Poisson distribution. Bayesian Anal 1:363–374 CrossRefGoogle Scholar
  12. Laird NM, Louis TA (1987) Empirical Bayes confidence intervals based on bootstrap samples. J Am Stat Assoc 82:739–757 CrossRefGoogle Scholar
  13. Marzocchi W, Zaccarelli L (2006) A quantitative model for the time-size distribution of eruptions. J Geophys Res 111:B04204. doi: 10.1029/2005JB003709 CrossRefGoogle Scholar
  14. Marzocchi W, Sandri L, Gasparini P, Newhall C, Boschi E (2004) Quantifying probabilities of volcanic events: the example of volcanic hazard at Mount Vesuvius. J Geophys Res 109:B11201. doi: 10.1029/2004JB003155 CrossRefGoogle Scholar
  15. Price RC, Gamble JA, Smith IEM, Stewart RB, Eggins S, Wright IC (2005) An integrated model for the temporal evolution of andesites and rhyolites and crustal development in New Zealand’s North Island. J Volcanol Geotherm Res 140:1–24 CrossRefGoogle Scholar
  16. Price RC, Turner S, Cook C, Hobden B, Smith IEM, Gamble JA, Handley H, Maas R, Mobis A (2010) Crustal and mantle influences and U-Th-Ra disequilibrium in andesitic lavas of Ngauruhoe volcano, New Zealand. Chem Geol 277:355–373. doi: 10.1016/j.chemgeo.2010.08.021 CrossRefGoogle Scholar
  17. Siebert L, Simkin T (2002) Volcanoes of the world: an illustrated catalog of holocene volcanoes and their eruptions. Global Volcanism Program Digital Information Series, GVP-3. Smithsonian Institution, Accessed 15 March 2010
  18. Simkin T, Seibert L, McClelland L, Bridge D, Newhall C, Latter JH (1981) Volcanoes of the world. Hutchisson Ross, Stroudsburg, 232 Google Scholar
  19. Solow AR (2001) An empirical Bayes analysis of volcanic eruptions. Math Geol 33:95–102 CrossRefGoogle Scholar
  20. Shmueli G, Minka TP, Kadane JB, Borle S, Boatwright P (2005) A useful distribution for fitting discrete data: revival of the Conway–Maxwell–Poisson distribution. Appl Stat 54:127–142 Google Scholar
  21. Turner M, Cronin S, Smith I, Bebbington M, Stewart RB (2008) Using titanomagnetite textures to elucidate volcanic eruption histories. Geology 36:31–34 CrossRefGoogle Scholar
  22. Wickman FE (1966) Repose-period patterns of volcanoes. Ark Mineral Geol 4:291–367 Google Scholar
  23. Wilding GE, Mudholkar GS (2008) A gamma goodness-of-fit test based on characteristic independence of the mean and coefficient of variation. J Stat Plan Inference 138:3813–3821 CrossRefGoogle Scholar
  24. Wilson LJ, Folks JL, Young JH (1986) Complete sufficiency and maximum likelihood estimation for the two-parameter negative binomial distribution. Metrika 33:349–362 CrossRefGoogle Scholar

Copyright information

© International Association for Mathematical Geosciences 2011

Authors and Affiliations

  • Armando Rodado
    • 1
  • Mark Bebbington
    • 2
    Email author
  • Alasdair Noble
    • 3
  • Shane Cronin
    • 2
  • Gill Jolly
    • 4
  1. 1.IFS–StatisticsMassey UniversityPalmerston NorthNew Zealand
  2. 2.Volcanic Risk SolutionsMassey UniversityPalmerston NorthNew Zealand
  3. 3.Plant and Food Research LimitedLincolnNew Zealand
  4. 4.GNS ScienceTaupoNew Zealand

Personalised recommendations