Advertisement

Mathematical Geosciences

, Volume 42, Issue 7, pp 857–876 | Cite as

The Hilbert Transform on the Two-Sphere: A Spectral Characterization

  • Oliver Fleischmann
  • Lennart Wietzke
  • Gerald Sommer
Special Issue

Abstract

The local analysis of signals arising on the sphere is a common task in earth sciences. On the real line the analytic signal turned out to be an important representation in local one-dimensional signal processing. Its generalization to two dimensions is the monogenic signal, and the properties of the analytic and the monogenic signal in the Fourier domain are well known. A generalization to the sphere is given by the Hilbert transform on the sphere known from Clifford analysis. To obtain a spectral characterization, the transform has to be decomposed into spherical harmonic functions. In this paper, we derive the spherical harmonic coefficients of the Hilbert transform on the sphere and give a series expansion. This will show that it acts as a differential operator on the spherical harmonic basis functions of the Laplace equation solution, analogously to the Riesz transform in two dimensions. This allows an interpretation of the Hilbert transform suitable for signal processing of signals naturally arising on the two-sphere. We show that the scale space naturally arising is a Poisson scale space in the unit ball. In addition, the obtained interpretation of the Hilbert transform is used for orientation analysis of plane waves. This representation is justified as a novel signal model on the sphere which can be used to construct intensity and rotation-invariant operators for local signal analysis in a scale-space concept.

Keywords

Riesz transform Cauchy transform Poisson scale space Spherical harmonics Wigner-D functions Plane wave decomposition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baylis WE (2004) Electrodynamics: a modern geometric approach. Progress in mathematical physics. Birkhäuser, Boston. Corrected edition, January 2004 Google Scholar
  2. Bernstein S, Hielscher R, Schaeben H (2009) The generalized totally geodesic Radon transform and its application to texture analysis. Math Methods Appl Sci 32(4):379 CrossRefGoogle Scholar
  3. Bogdanova I, Bresson X, Thiran JP, Vandergheynst P (2007) Scale space analysis and active contours for omnidirectional images. IEEE Trans Image Process 16(7):1888–1901 CrossRefGoogle Scholar
  4. Brackx F, De Knock B, De Schepper H, Eelbode D (2006) On the interplay between the Hilbert transform and conjugate harmonic functions. Math Methods Appl Sci 29(12):1435–1450 CrossRefGoogle Scholar
  5. Crotwell P (2000) Constructive approximation on the sphere. Math Geol 32(2):247–248 CrossRefGoogle Scholar
  6. Delanghe R (2004) On some properties of the Hilbert transform in Euclidean space. Bull Belg Math Soc S Stevin 11(2):163–180 Google Scholar
  7. Delanghe R, Sommen F, Soucek V (1992) Clifford algebra and spinor-valued functions: a function theory for the Dirac operator. Mathematics and its applications, 1st edn. Springer, Berlin Google Scholar
  8. Driscoll JR, Healy DM Jr (1994) Computing Fourier transforms and convolutions on the 2-sphere. Adv Appl Math 15(2):202–250. ISSN 0196-8858 CrossRefGoogle Scholar
  9. Felsberg M, Sommer G (2001) The monogenic signal. IEEE Trans Signal Process 49(12):3136–3144 CrossRefGoogle Scholar
  10. Felsberg M, Sommer G (2004) The monogenic scale-space: a unifying approach to phase-based image processing in scale-space. J Math Imaging Vis 21(1):5–26 CrossRefGoogle Scholar
  11. Freeden W, Hesse K (2002) On the multiscale solution of satellite problems by use of locally supported kernel functions corresponding to equidistributed data on spherical orbits. Stud Sci Math Hung 39(1):37–74 Google Scholar
  12. Freeden W, Gervens T, Schreiner M (1998) Constructive approximation on the sphere. Clarendon Press, Oxford Google Scholar
  13. Gabor D (1946) Theory of communication. J IEE (Lond) 93:429–457 Google Scholar
  14. Jeffrey A, Zwillinger D (eds) (2000) Table of integrals, series, and products, 6th edn. Elsevier, Amsterdam Google Scholar
  15. Makadia A, Sorgi L, Daniilidis K (2004) Rotation estimation from spherical images. In: ICPR ’04: Proceedings of the pattern recognition, 17th international conference on (ICPR’04), vol 3, Washington, DC, USA. IEEE Computer Society, New York, pp 590–593 CrossRefGoogle Scholar
  16. Mcewen JD, Vielva P, Wiaux Y, Barreiro RB, Cayon L, Hobson MP, Lasenby AN, Martinez-Gonzalez E, Sanz JL (2007) Cosmological applications of a wavelet analysis on the sphere. J Fourier Anal Appl 13(4):495–510 ISSN 1069-5869 CrossRefGoogle Scholar
  17. Newman ET, Penrose R (1966) Note on the Bondi–Metzner–Sachs group. J Math Phys 7:863 CrossRefGoogle Scholar
  18. Pendleton DJ (2003) Euler angle geometry, helicity basis vectors, and the Wigner D-function addition theorem. Am J Phys 71(12):1280–1291 CrossRefGoogle Scholar
  19. Schaeben H (1996) A unified view of methods to resolve the inverse problem of texture goniometry. Textures Microstruct 25(2):171–182 CrossRefGoogle Scholar
  20. Schaeben H, van den Boogaart KG (2003) Spherical harmonics in texture analysis. Tectonophysics 370(1–4):253–268 CrossRefGoogle Scholar
  21. Srinivasan K, Mahawar H, Sarin V (2005) A multipole based treecode using spherical harmonics for potentials of the form r λ. In: Computational science (ICCS 2005). Lecture notes in computer science, vol 3514. Springer, Berlin/Heidelberg, pp 107–114 CrossRefGoogle Scholar
  22. Stein EM (1971) Singular integrals and differentiability properties of functions (PMS-30). Princeton University Press, Princeton Google Scholar
  23. Thompson WJ (1994) Angular momentum: an illustrated guide to rotational symmetries for physical systems. Wiley, New York Google Scholar
  24. Wiaux Y, Jacques L, Vielva P, Vandergheynst P (2006) Fast directional correlation on the sphere with steerable filters. Astrophys J 652(1):820–832 CrossRefGoogle Scholar

Copyright information

© International Association for Mathematical Geosciences 2010

Authors and Affiliations

  • Oliver Fleischmann
    • 1
  • Lennart Wietzke
    • 1
  • Gerald Sommer
    • 1
  1. 1.Department of Computer ScienceChair of Cognitive Systems Kiel UniversityKielGermany

Personalised recommendations