Mathematical Geosciences

, Volume 42, Issue 4, pp 359–375 | Cite as

Orientation Distribution Within a Single Hematite Crystal



While crystallography conventionally presumes that a single crystal carries a unique crystallographic orientation, modern experimental techniques reveal that a single crystal may exhibit an orientation distribution. However, this distribution is largely concentrated; it is extremely concentrated when compared with orientation distributions of polycrystalline specimen. A case study of a deformation experiment with a single hematite crystal is presented, where the experimental deformation induced twining, which in turn changed a largely concentrated unimodal “parent” orientation distribution into a multimodal orientation distribution with a major mode resembling the parent mode and three minor modes corresponding to the progressive twining. The free and open source software MTEX for texture analysis was used to compute and visualize orientations density functions from both integral orientation measurements, i.e. neutron diffraction pole intensity data, and individual orientation measurements, i.e. electron back scatter diffraction data. Thus it is exemplified that MTEX is capable of analysing orientation data from largely concentrated orientation distributions.


Texture analysis Individual orientation measurements Electron back scatter diffraction (EBSD) Orientation density function Kernel density estimation on SO(3) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bunge H-J (1969) Mathematische Methoden der Texturanalyse. Akademie Verlag, Berlin Google Scholar
  2. Bunge H-J, Morris PR (1982) Texture analysis in materials science—mathematical methods. Butterworth, Stoneham Google Scholar
  3. Dunkl CF (1966) Operators and harmonic analysis on the sphere. Trans Am Math Soc 125:250–263 CrossRefGoogle Scholar
  4. Freeden W, Gervens T, Schreiner M (1998) Constructive approximation on the sphere. Clarendon, Oxford Google Scholar
  5. Hall P, Watson GS, Cabrera J (1987) Kernel density estimation with spherical data. Biometrika 74:751–762 CrossRefGoogle Scholar
  6. Hielscher R (2007) The radon transform on the rotation group—inversion and application to texture analysis. PhD thesis, TU Bergakademie Freiberg, Germany Google Scholar
  7. Hielscher R, Schaeben H (2008a) A novel pole figure inversion method: specification of the MTEX algorithm. J Appl Crystologr 41:1024–1037 CrossRefGoogle Scholar
  8. Hielscher R, Schaeben H (2008b) Multi-scale texture modeling. Math Geosci 40:63–82 CrossRefGoogle Scholar
  9. Jansen E, Schäfer W, Kirfel A (2000) The Jülich neutron diffractometer and data processing in rock texture investigations. J Struct Geol 22:1559–1564 CrossRefGoogle Scholar
  10. Kunze K, Wright SI, Adams BL, Dingley DJ (1993) Advances in automatic EBSD single orientation measurements. Textures Microstruct 20:41–54 CrossRefGoogle Scholar
  11. Matthies S, Vinel GW, Helming K (1987) Standard distributions in texture analysis, vol 1. Akademie Verlag, Berlin Google Scholar
  12. Morawiec A (1997) Distributions of misorientation angles and misorientation axes for crystallites with different symmetries. Acta Crystologr A 53:273–285 CrossRefGoogle Scholar
  13. Parzen E (1962) On estimation of a probability density function and mode. Ann Math Stat 33:1065–1076 CrossRefGoogle Scholar
  14. Paterson MS (1970) A high pressure, high-temperature apparatus for rock deformation. Int J Rock Mech Min Sci 7:517–526 CrossRefGoogle Scholar
  15. Paterson MS (1990) Rock deformation experimentation. In: Duba AG, Durham WB, Handin JW, Wang HF (eds) The brittle-ductile transition in rocks; the heard volume. American geophysical union geophysical monograph, vol 56, pp 187–194 Google Scholar
  16. Schaeben H (1982) Fabric-diagram contour precision and size of counting element related to sample size by approximation theory methods. Math Geol 14:205–216. Erratum: Math Geol 15:579–580 CrossRefGoogle Scholar
  17. Schaeben H (1997) A simple standard orientation density function: the hyperspherical de la Vallée Poussin kernel. Phys Stat Sol B 200:367–376 CrossRefGoogle Scholar
  18. Schaeben H (1999) The de la Vallée Poussin standard orientation density function. In: Proceedings of the international conference on neutron texture and stress analysis, Dubna, Russia, 23–26 June 1997. Special Issue Textures Microstruct 33:365–373 Google Scholar
  19. Schaeben H, Boogaart KGvd (2003) Spherical harmonics in texture analysis. Tectonophysics 370:253–268 CrossRefGoogle Scholar
  20. Schaeben H, Hielscher R, Fundenberger J-J, Potts D, Prestin J (2007) Orientation density function-controlled pole probability density function measurements: automated adaptive control of texture goniometers. J Appl Cryst 40:570–579 CrossRefGoogle Scholar
  21. Scott DW (1992) Multivariate density estimation—theory, practice, and visualization. Wiley, New York CrossRefGoogle Scholar
  22. Siemes H, Klingenberg B, Rybacki E, Naumann M, Schäfer W, Jansen E, Kunze K (2008) Glide systems of hematite single crystals in deformation experiments. Ore Geol Rev 33:255–279 CrossRefGoogle Scholar
  23. Tapia RA, Thompson JR (1978) Nonparametric probability density estimation. Johns Hopkins Press, Baltimore Google Scholar

Copyright information

© International Association for Mathematical Geosciences 2010

Authors and Affiliations

  • Ralf Hielscher
    • 1
  • Helmut Schaeben
    • 2
  • Heinrich Siemes
    • 3
  1. 1.Applied Functional AnalysisTUChemnitzGermany
  2. 2.Geoscience Mathematics and InformaticsTU BergakademieFreibergGermany
  3. 3.RWTHAachenGermany

Personalised recommendations