Mathematical Geosciences

, Volume 41, Issue 7, pp 829–834 | Cite as

Reply to “On the Harker Variation Diagrams; …” by J.A. Cortés

  • Juan José Egozcue
Short Note


Compositional data principles Olivine Fractionation Stoichiometry Lever rule Conservation of mass 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aitchison J (1986) The statistical analysis of compositional data. Monographs on statistics and applied probability. Chapman & Hall, London. Reprinted in 2003 with additional material by The Blackburn Press, 416 p Google Scholar
  2. Aitchison J, Egozcue JJ (2005) Compositional data analysis: where are we and where should we be heading? Math Geol 37(7):829–850 CrossRefGoogle Scholar
  3. Barceló-Vidal C, Martín-Fernández JA, Pawlowsky-Glahn V (2001) Mathematical foundations of compositional data analysis. In Ross G (ed) Proceedings of IAMG’01—The sixth annual conference of the international association for mathematical geology, 20 p, CD-ROM Google Scholar
  4. Buccianti A, Pawlowsky-Glahn V (2005) New perspectives on water chemistry and compositional data analysis. Math Geol 37(7):703–727 CrossRefGoogle Scholar
  5. Chayes F (1960) On correlation between variables of constant sum. J Geophys Res 65(12):4185–4193 CrossRefGoogle Scholar
  6. Cortés JA (2009) On the Harker Variation Diagrams; A Comment on “The Statistical Analysis of Compositional Data. Where Are We and Where Should We Be Heading?” by Aitchison and Egozcue (2005). Math Geosci. doi: 10.1007/s11004-009-9222-8
  7. Martín-Fernández JA, Barceló-Vidal C, Pawlowsky-Glahn V (2003) Dealing with zeros and missing values in compositional data sets using nonparametric imputation. Math Geol 35(3):253–278 CrossRefGoogle Scholar

Copyright information

© International Association for Mathematical Geosciences 2009

Authors and Affiliations

  1. 1.Dept. Matemàtica Aplicada IIIUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations