Mathematical Geosciences

, Volume 41, Issue 5, pp 509–533

Application of FFT-based Algorithms for Large-Scale Universal Kriging Problems



Looking at kriging problems with huge numbers of estimation points and measurements, computational power and storage capacities often pose heavy limitations to the maximum manageable problem size. In the past, a list of FFT-based algorithms for matrix operations have been developed. They allow extremely fast convolution, superposition and inversion of covariance matrices under certain conditions. If adequately used in kriging problems, these algorithms lead to drastic speedup and reductions in storage requirements without changing the kriging estimator. However, they require second-order stationary covariance functions, estimation on regular grids, and the measurements must also form a regular grid. In this study, we show how to alleviate these rather heavy and many times unrealistic restrictions. Stationarity can be generalized to intrinsicity and beyond, if decomposing kriging problems into the sum of a stationary problem and a formally decoupled regression task. We use universal kriging, because it covers arbitrary forms of unknown drift and all cases of generalized covariance functions. Even more general, we use an extension to uncertain rather than unknown drift coefficients. The sampling locations may now be irregular, but must form a subset of the estimation grid. Finally, we present asymptotically exact but fast approximations to the estimation variance and point out application to conditional simulation, cokriging and sequential kriging. The drastic gain in computational and storage efficiency is demonstrated in test cases. Especially high-resolution and data-rich fields such as rainfall interpolation from radar measurements or seismic or other geophysical inversion can benefit from these improvements.


Fast Fourier transform Efficient geostatistical estimation Spectral methods Superfast Toeplitz solver 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ababou R, Bagtzoglou AC, Wood EF (1994) On the condition number of covariance matrices in kriging, estimation, and simulation of random fields. Math Geol 26(1):99–133 CrossRefGoogle Scholar
  2. Barnett S (1990) Matrices methods and applications. Oxford applied mathematics and computing science series. Clarendon, Oxford Google Scholar
  3. Börm S, Grasedyck L, Hackbusch W (2003) Introduction to hierarchical matrices with applications. Eng Anal Bound Elem 27:405–422. doi:10.1016/S0955–7997(02)00152–2 CrossRefGoogle Scholar
  4. Chan RH, Ng MK (1996) Conjugate gradient methods for Toeplitz systems. SIAM Rev 38(3):427–482 CrossRefGoogle Scholar
  5. Cirpka OA, Nowak W (2003) Dispersion on kriged hydraulic conductivity fields. Water Resour Res. doi:10.1029/2001WR000598 Google Scholar
  6. Cirpka OA, Nowak W (2004) First-order variance of travel time in non-stationary formations. Water Resour Res 40:W03507. doi:10.1029/2003WR002851 CrossRefGoogle Scholar
  7. Cooley JW, Tukey JW (1965) An algorithm for the machine calculation of complex Fourier series. Math Comput 19:297–301 CrossRefGoogle Scholar
  8. Davis PJ (1979) Circulant matrices. Pure and applied mathematics. Wiley, New York Google Scholar
  9. Davis MW, Culhane PG (1984) Contouring very large data sets using kriging. In: Verly G (eds) Geostatistics for natural resources characterization, Part 2. Reidel, Dordrecht Google Scholar
  10. Davis MW, Grivet C (1984) Kriging in a global neighborhood. Math Geol 16(3):249–265 CrossRefGoogle Scholar
  11. Dietrich CR, Newsam GN (1989) A stability analysis of the geostatistical approach to aquifer transmissivity identification. Stoch Hydrol Hydraul 3:293–316 CrossRefGoogle Scholar
  12. Dietrich CR, Newsam GN (1993) A fast and exact method for multidimensional Gaussian stochastic simulations. Water Resour Res 29(8):2861–2869 CrossRefGoogle Scholar
  13. Dietrich CR, Newsam GN (1996) A fast and exact method for multidimensional Gaussian stochastic simulations: Extension to realizations conditioned on direct and indirect measurements. Water Resour Res 32(6):1643–1652 CrossRefGoogle Scholar
  14. Dietrich CR, Newsam GN (1997) Fast and exact simulation of stationary Gaussian processes through circulant embedding of the covariance matrix. SIAM J Sci Comput 18(4):1088–1107 CrossRefGoogle Scholar
  15. Duijndam AJW, Schonewille MA (1999) Nonuniform fast Fourier transform. Geophysics 64(2):539–551 CrossRefGoogle Scholar
  16. Dykaar BB, Kitanidis PK (1992) Determination of the effective hydraulic conductivity for heterogeneous porous media using a numerical spectral approach. 1. Method. Water Resour Res 28(4):1155–1166 CrossRefGoogle Scholar
  17. Fessler JA, Sutton BP (2003) Nonuniform fast Fourier transform using min-max interpolation. IEEE Trans Signal Process 51(2):560–574 CrossRefGoogle Scholar
  18. Fourmont K (2003) Non-equispaced fast Fourier transforms with applications to tomography. J Fourier Anal Appl 9(5):431–450 CrossRefGoogle Scholar
  19. Frigo M, Johnson SG (1998) FFTW: An adaptive software architecture for the FFT. In: Proc ICASSP, vol 3. IEEE Press, New York, pp 1381–1384. Google Scholar
  20. Fuentes M (2007) Approximate likelihood for large irregularly spaced spatial data. J Am Stat Assoc 102(477) 321–331. doi:10.1198/016214506000000852 CrossRefGoogle Scholar
  21. Gallivan K, Thirumalai S, Dooren PV, Vermaut V (1996) High performance algorithms for Toeplitz and block Toeplitz matrices. Linear Algebra Appl 241–243(13):343–388 CrossRefGoogle Scholar
  22. Golub GH, van Loan CF (1996) Matrix computations, 3rd edn. John Hopkins University Press, Baltimore Google Scholar
  23. Good IJ (1950) On the inversion of circulant matrices. Biometrika 37:185–186 Google Scholar
  24. Greengard L, Lee J-Y (2004) Accelerating the nonuniform fast Fourier transform. SIAM Rev 46(3):443–454 CrossRefGoogle Scholar
  25. Hestenes MR, Stiefel E (1952) Methods of conjugate gradients for solving linear systems. J Res Nat Bur Stand 49:409–436 Google Scholar
  26. Kailath T, Sayed AH (1995) Displacement structure: Theory and applications. SIAM Rev 37(3):297–386 CrossRefGoogle Scholar
  27. Kailath T, Sayed AH (1999) Fast reliable algorithms of matrices with structure. SIAM, Philadelphia Google Scholar
  28. Kitanidis PK (1986) Parameter uncertainty in estimation of spatial functions: Bayesian analysis. Water Resour Res 22(4):499–507 CrossRefGoogle Scholar
  29. Kitanidis PK (1993) Generalized covariance functions in estimation. Math Geol 25(5):525–540 CrossRefGoogle Scholar
  30. Kitanidis PK (1995) Quasi-linear geostatistical theory for inversing. Water Resour Res 31(10):2411–2419 CrossRefGoogle Scholar
  31. Kitanidis PK (1996) Analytical expressions of conditional mean, covariance, and sample functions in geostatistics. Stoch Hydrol Hydraul 12:279–294 CrossRefGoogle Scholar
  32. Kitanidis PK (1997) Introduction to geostatistics. Cambridge University Press, Cambridge Google Scholar
  33. Kitanidis PK, Vomvoris EG (1983) A geostatistical approach to the inverse problem in groundwater modeling (steady state) and one-dimensional simulations. Water Resour Res 19(3):677–690 CrossRefGoogle Scholar
  34. Kozintsev B (1999) Computations with Gaussian random fields. PhD thesis, Institute for Systems Research, University of Maryland Google Scholar
  35. Liu QH, Ngyuen N (1998) An accurate algorithm for nonuniform fast Fourier transforms (NUFFT’s). IEEE Microw Guided Wave Lett 8(1):18–20 CrossRefGoogle Scholar
  36. Müller WG (2007) Collecting spatial data. Optimum design of experiments for random fields, 3rd edn. Springer, Berlin Google Scholar
  37. Newsam GN, Dietrich CR (1994) Bounds on the size of nonnegative definite circulant embeddings of positive definite Toeplitz matrices. IEEE Trans Inf Theory 40(4):1218–1220 CrossRefGoogle Scholar
  38. Nowak W (2005) Geostatistical methods for the identification of flow and transport parameters in subsurface flow. Ph.D. thesis, Institut für Wasserbau, Universität Stuttgart,
  39. Nowak W, Cirpka OA (2004) A modified Levenberg–Marquardt algorithm for quasi-linear geostatistical inversing. Adv Water Resour 27(7):737–750 CrossRefGoogle Scholar
  40. Nowak W, Cirpka OA (2006) Geostatistical inference of conductivity and dispersion coefficients from hydraulic heads and tracer data. Water Resour Res 42:W08416. doi:10.1029/2005WR004832 CrossRefGoogle Scholar
  41. Nowak W, Tenkleve S, Cirpka OA (2003) Efficient computation of linearized cross-covariance and auto-covariance matrices of interdependent quantities. Math Geol 35(1):53–66 CrossRefGoogle Scholar
  42. Omre H (1987) Bayesian kriging-merging observations and qualified guesses in kriging. Math Geol 19(1):25–39 CrossRefGoogle Scholar
  43. Pegram GGS (2004) Spatial interpolation and mapping of rainfall (SIMAR). Data merging for rainfall map production, vol 3. Water Research Commission Report (1153/1/04) Google Scholar
  44. Press WH, Teukolsky BPFSA, Vetterling WT (1992) Numerical recipes: the art of scientific computing, 2nd edn. Cambridge University Press, Cambridge Google Scholar
  45. Pukelsheim F (2006) Optimal design of experiments. Classics in applied mathematics. SIAM, Philadelphia Google Scholar
  46. Rino CL (1970) The inversion of covariance matrices by finite Fourier transforms. IEEE Trans Inf Theory 16:230–232 CrossRefGoogle Scholar
  47. Schweppe FC (1973) Uncertain dynamic systems. Prentice-Hall, Englewood Cliffs Google Scholar
  48. Shewchuk JR (1994). An introduction to the conjugate gradient method without the agonizing pain.
  49. Strang G (1986) A proposal for Toeplitz matrix calculations. Stud Appl Math 74:171–176 Google Scholar
  50. Trapp GE (1973) Inverses of circulant matrices and block circulant matrices. Kyungpook Math J 13(1): 11–20 Google Scholar
  51. Van Barel M, Heinig G, Kravanja P (2001) A stabilized superfast solver for nonsymmetric Toeplitz systems. SIAM J Matrix Anal A 23(2):494–510 CrossRefGoogle Scholar
  52. van Loan CF (1992) Computational frameworks for the fast Fourier transform. SIAM, Philadelphia Google Scholar
  53. Varga RS (1954) Eigenvalues of circulant matrices. Pac J Math 4:151–160 Google Scholar
  54. Vargas-Guzmán JA, Yeh T-CJ (1999) Sequential kriging and cokriging: Two powerful geostatistical approaches. Stoch Environ Res Risk Assess 13:416–435 CrossRefGoogle Scholar
  55. Vargas-Guzmán JA, Yeh T-CJ (2002) The successive linear estimator: a revisit. Adv Water Resour 25:773–781 CrossRefGoogle Scholar
  56. Wesson SM, Pegram GGS (2004) Radar rainfall image repair techniques. Hydrol Earth Syst Sci 8(2):8220–8234 CrossRefGoogle Scholar
  57. Zimmerman DL (1989) Computationally exploitable structure of covariance matrices and generalized covariance matrices in spatial models. J Stat Comput Simul 32(1/2):1–15 CrossRefGoogle Scholar

Copyright information

© International Association for Mathematical Geosciences 2009

Authors and Affiliations

  1. 1.Institute of Hydraulic Engineering, Department of Hydromechanics and Modeling of HydrosystemsUniversität StuttgartStuttgartGermany
  2. 2.Institute for Fluid MechanicsLeibniz Universität HannoverHannoverGermany
  3. 3.Civil and Environmental EngineeringUniversity of CaliforniaBerkeleyUSA

Personalised recommendations