Advertisement

Mathematical Geology

, Volume 38, Issue 6, pp 711–719 | Cite as

A Method for Modeling of a Creeping Slope with a Visco-Hypoplastic Material Law

  • Geeralt van den Ham
  • Joachim Rohn
  • Thomas Meier
  • Kurt Czurda
Article

Abstract

This paper presents the numerical simulation of a creeping slope in Upper Austria, using a visco-hypoplastic material law which describes the mechanical behavior of cohesive soils allowing for viscous effects, i.e. creep and relaxation. The method consists of: (1) determination of the parameters of the material law, based on laboratory tests on soil samples taken from the slope; (2) simulation of the laboratory tests with an element test program in which the used material law was implemented, in order to test whether the model holds for the soils studied; and (3) simulation of slope movements at different sections along the slope, assuming an infinite slope. The simulation results fit well with the field measurements. This demonstrates that despite strongly simplified boundary conditions and limited availability of subsurface data (e.g. density) the visco-hypoplastic law is a promising tool for predicting creep movements.

Keywords

creeping slope visco-hypoplastic law Upper Austria 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Duncan, J. M., 1996, State of the Art: Limit equilibrium and finite-element analysis of slopes: J. Geotech. Eng., v. 122, no. 7, p. 577–586.CrossRefGoogle Scholar
  2. Herle, I., 1997, Hypoplastizität und Granulometrie einfacher Korngeröste: Ph.D. thesis, Veröffentlichungen des Institutes für Bodenmechanik und Felsmechanik, v. 142, Univ. of Karlsruhe, Karlsruhe, 123 p.Google Scholar
  3. Jaky, J., 1944, The coefficient of earth pressure at rest. (A nyugalmi nyomas tenyezoje): J. Soc. Hung. Eng. Arch. (Magyar Mernok es Epitesz-Egylet Kozlonye), p. 355–358. (in Hungarian)Google Scholar
  4. Karcher, C., 2003, Tagebaubedingte Deformationen im Lockergestein: Ph.D. thesis, Veröffentlichungen des Institutes für Bodenmechanik und Felsmechanik, v. 160, Univ. of Karlsruhe, Karlsruhe, 193 p.Google Scholar
  5. Niemunis, A., and Krieg, S., 1996, Viscous behaviour of soil under oedometric conditions: Can. Geotech. J., v. 33, p. 159–168.Google Scholar
  6. Niemunis, A., 1996, A visco-plastic model for clay and its FE-implementation: Resultats recents en mechanique des sols et des roches XI Colloque Franco-Polonais, Gdansk, p. 151–162.Google Scholar
  7. Niemunis, A., 2003, Extended hypoplastic models for soils: Dissertation for habilitation, Schriftenreihe des Instituts für Grundbau und Bodenmechanik, v. 34, Univ. of Bochum, Bochum, 233 p.Google Scholar
  8. Prevost, J. H., and Popescu, R., 1996, Constitutive relations for soil materials: Electron. J. Geotech. Eng., v. 1.Google Scholar
  9. Rohn, J., 1991, Geotechnical investigations on a large landslide in Bad Goisern (Upper Austria): Ph.D. thesis, Schriftenreihe Angewandte Geologie, v. 14, Univ. of Karlsruhe, Karlsruhe, 193 p. (in German).Google Scholar
  10. Roscoe, K. H., and Burland, J. B., 1968, On the generalized stress-strain behaviour of wet clay, in Heyman, J., and Leckie, F. A., eds., Engineering Plasticity: Cambridge University Press, Cambridge, p. 535–609.Google Scholar
  11. Schofield, A., and Wroth, P., 1968, Critical state soil mechanics: McGraw-Hill, New York, 310 p.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Geeralt van den Ham
    • 1
  • Joachim Rohn
    • 1
  • Thomas Meier
    • 2
  • Kurt Czurda
    • 1
  1. 1.Department of Applied GeologyUniversity of KarlsruheKarlsruheGermany
  2. 2.Institute of Soil Mechanics and Rock MechanicsUniversity of KarlsruheKarlsruheGermany

Personalised recommendations