Mathematical Geology

, Volume 37, Issue 7, pp 795–828 | Cite as

Groups of Parts and Their Balances in Compositional Data Analysis

Article

Abstract

Amalgamation of parts of a composition has been extensively used as a technique of analysis to achieve reduced dimension, as was discussed during the CoDaWork'03 meeting (Girona, Spain, 2003). It was shown to be a non-linear operation in the simplex that does not preserve distances under perturbation. The discussion motivated the introduction in the present paper of concepts such as group of parts, balance between groups, and sequential binary partition, which are intended to provide tools of compositional data analysis for dimension reduction. Key concepts underlying this development are the established tools of subcomposition, coordinates in an orthogonal basis of the simplex, balancing element and, in general, the Aitchison geometry in the simplex. Main new results are: a method to analyze grouped parts of a compositional vector through the adequate coordinates in an ad hoc orthonormal basis; and the study of balances of groups of parts (inter-group analysis) as an orthogonal projection similar to that used in standard subcompositional analysis (intra-group analysis). A simulated example compares results when testing equal centers of two populations using amalgamated parts and balances; it shows that, in certain circumstances, results from both analysis can disagree.

Keywords

simplex Euclidean geometry log-ratio analysis orthogonal projection subcomposition amalgamation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aitchison, J., 1982, The statistical analysis of compositional data (with discussion): J. R. Stat. Soc. B (Stat. Methodol.), v. 44, no. 2, p. 139–177.Google Scholar
  2. Aitchison, J., 1992, On criteria for measures of compositional difference: Math. Geol., v. 24, no. 4, pp. 365–379.CrossRefGoogle Scholar
  3. Aitchison, J., 2003a, The statistical analysis of compositional data (reprint): Blackburn Press, Caldwell, NJ, 416 p.Google Scholar
  4. Aitchison, J., 2003b, Compositional data analysis: Where are we and where should we be heading? See Thió-Henestrosa and Martín-Fernández (2003).Google Scholar
  5. Aitchison, J., Barceló-Vidal, C., Egozcue, J. J., and Pawlowsky-Glahn, V., 2002, A concise guide for the algebraic–geometric structure of the simplex, the sample space for compositional data analysis, in Bayer U., Burger H., and Skala W., eds., Proceedings of IAMG'02—The Eighth Annual Conference of the International Association for Mathematical Geology, Terra Nostro, no. 3, p. 387–392.Google Scholar
  6. Barceló-Vidal, C., 2000, Fundamentación matemática del análisis de datos composicionales: Technical Report IMA 00-02-RR, Departament d'Informática i Matemática Aplicada, Universitat de Girona, Spain, 77 p.Google Scholar
  7. Barceló-Vidal, C., Martín-Fernández, J. A., and Pawlowsky-Glahn, V., 2001, Mathematical foundations of compositional data analysis, in Ross G., ed., Proceedings of IAMG'01—The Sixth Annual Conference of the International Association for Mathematical Geology, CO-ROM, 20 p.Google Scholar
  8. Billheimer, D., Guttorp, P., and Fagan, W., 2001, Statistical interpretation of species composition: J. Am. Stat. Assoc., v. 96, p. 1205–1214.CrossRefGoogle Scholar
  9. Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G., and Barceló-Vidal, C., 2003, Isometric logratio transformations for compositional data analysis: Math. Geol., v. 35, no. 3, p. 279–300.CrossRefGoogle Scholar
  10. Mateu-Figueras, G., 2003, Models de distribució sobre el símplex. Ph.D. thesis, Universitat Politècnica de Catalunya, Barcelona, Spain.Google Scholar
  11. Pawlowsky-Glahn, V., 2003, Statistical modelling on coordinates. See Thió-Henestrosa and Martín-Fernández (2003).Google Scholar
  12. Pawlowsky-Glahn, V. and Egozcue, J. J., 2001, Geometric approach to statistical analysis on the simplex: Stochastic Environ. Res. Risk Assess. (SERRA), v. 15, no. 5, p. 384–398.Google Scholar
  13. Pawlowsky-Glahn, V. and Egozcue, J. J., 2002, BLU estimators and compositional data: Math. Geol., v. 34, no. 3, p. 259–274.CrossRefGoogle Scholar
  14. Thió-Henestrosa, S. and Martín-Fernández, J. A., eds., 2003, Compositional Data Analysis Workshop—CoDaWork'03, Proceedings, Universitat de Girona, CD-ROM, ISBN 84-8458-111-X, http://ima.udg.es/Activitats/CoDaWork03/.

Copyright information

© International Association for Mathematical Geology 2005

Authors and Affiliations

  1. 1.Departamento de Matemàtica Aplicada IIIUniversitat Politècnica de Catalunya (Campus Nord)BarcelonaSpain
  2. 2.Departamento d'Informàtica i Matemàtica AplicadaUniversitat de GironaGironaSpain

Personalised recommendations