Materials Science

, Volume 55, Issue 2, pp 214–218 | Cite as

Structure and Properties of Ionic-Plasma WC Coatings

  • V. P. Kolesnyk
  • O. М. Chuhai
  • D. V. Slyusar
  • O. S. Kalakhan
  • O. О. Voloshyn
  • S. V. Oleinyk
  • H. H. Veselivs’kaEmail author

We develop a technology for the formation of coatings based on spraying of various target cathodes made of pure tungsten and bronze. To check the technology, we formed WC coatings with thicknesses of 4–9 μm on the substrates of BrAZh9-4 bronze and 12Kh18N10Т corrosion-resistant steel and studied their structure, morphology of the surface, and the inhomogeneity of electric resistance of the coating–substrate system in the direction normal to its surface. It is shown that the coatings have textures and contain nanoblocks 30 nm in size. It was also discovered that the morphology of the coating surface is sensitive to the conditions of their formation.


ion-plasma technology tungsten carbide ion-plasma method microstructure surface morphology inhomogeneity of the electric properties 


  1. 1.
    F. I. Chaplygin, Tungsten Carbides [in Russian] (2011), Access mode: URL:
  2. 2.
    М. М. Student, H. V. Pokhmurs’ka, and Kh. R. Zadorozhna, “Structure and wear resistance of VC–FeCr and VC–FeCrСо coatings, obtained by supersonic flame spraying,” Fiz.-Khim. Mekh. Mater.,54, No. 1, 31–37 (2018); English translation:Mater. Sci.,54, No. 1, 22–29 (2018).CrossRefGoogle Scholar
  3. 3.
    M. Student, Yu. Dzioba, V. Hvozdets’kyi, H. Pokhmurs’ka, V. Wielage, and T. Grund, “High-temperature corrosion of electric-arc coatings sprayed from powder core wires based on the Fe–Cr–B–Al system,” Fiz.-Khim. Mekh. Mater.,44, No. 5, 93–97 (2008); English translation:Mater. Sci.,44, No. 5, 693–699 (2008).CrossRefGoogle Scholar
  4. 4.
    А. А. Rempel’, “Effects of atomic and vacancy ordering in nonstoichiometric carbides,” Usp. Fiz. Nauk,166, No. 1, 33–62 (1996).CrossRefGoogle Scholar
  5. 5.
    V. V. Kolesnik, V. P. Kolesnik, and D. V. Slyusar’, “Application of multicomponent coatings with controlled composition over the length of a product,” in: Proc. IX Internat. Symp. on Radiation Plasma Dynamics [in Russian], NITs “Inzhener”, Moscow (2012), pp. 233–238.Google Scholar
  6. 6.
    O. V. Sobol’, “Mechanism of formation of the phase-structural state of condensates obtained by ionic spraying,” Fiz. Inzhener. Poverkh.,6, No. 1–2, 20–36 (2008).Google Scholar
  7. 7.
    “Oxford Cryosystems. Crystallographica Search-Match,” J. Appl. Crystallography,32, No. 2, 379–380 (1999).Google Scholar
  8. 8.
    I. S. Grigor’ev and E. Z. Meilikhov, Physical Quantities: A Handbook [in Russian], Énergoatomizdat, Moscow (1991).Google Scholar
  9. 9.
    O. N. Chugai, S. L. Abashin, A. V. Gaidachuk, D. P. Zherebyat’ev, E. A. Zhuk, Y. A. Yatsyna, A. A. Poluboyarov, S. V. Sulima, and I. S. Terzin, “Compositional and dielectric inhomogeneities in melt-grown CdZnTe crystals,” Inorganic Mater.,51, No. 10, 972–977 (2015).CrossRefGoogle Scholar
  10. 10.
    T. Ryu, H. Y. Sohn, K. S. Hwang, and Z. Z. Fang, “Plasma synthesis of tungsten carbide nanopowder from ammonium paratungstate,” J. Amer. Ceram. Soc.,92, No. 3, 655–660 (2009).CrossRefGoogle Scholar
  11. 11.
    A. Santos, C. Gonzalez, and Z. Y. Ramirez, “Characterization of tungsten carbide coatings deposited on AISI 1020 steel,” J. Phys.: Conf. Ser.,786 (2017). – DOI: Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • V. P. Kolesnyk
    • 1
  • O. М. Chuhai
    • 1
  • D. V. Slyusar
    • 1
  • O. S. Kalakhan
    • 2
  • O. О. Voloshyn
    • 1
  • S. V. Oleinyk
    • 1
  • H. H. Veselivs’ka
    • 3
    Email author
  1. 1.“Kharkiv Aviation Institute” Zhukovskii National Aerospace UniversityKharkivUkraine
  2. 2.Lviv National Agricultural UniversityLvivUkraine
  3. 3.Karpenko Physicomechanical InstituteUkrainian National Academy of SciencesLvivUkraine

Personalised recommendations