Materials Science

, Volume 55, Issue 2, pp 181–186 | Cite as

Influence of Rhenium on the Heat Resistance of the Alloy of Cobalt with Niobium Carbide

  • H. P. DmytrievaEmail author
  • Т. S. Cherepova
  • Т. А. Kosorukova
  • Т. V. Pryadko

By the methods of physicochemical analysis, we study the influence of 1–9 wt.% of rhenium on the melting temperature, structure, and heat resistance of the industrial KhTN-62 cast alloy used for wear protection of the contact surfaces of working blades of gas-turbine engines. It was established that, for the optimal rhenium content varying from 3 to 9 wt.%, the oxidation resistance of the alloy at 1100°C becomes twice higher. In this case, the melting temperature of the alloy remains not lower than 1300°C, its structure does not change, and therefore, it is quite promising for application under severe operating conditions of gas-turbine engines.


cobalt niobium carbide eutectic industrial KhTN-62 alloy rhenium heat resistance melting temperature structure 


  1. 1.
    G. Dmitrieva and T. Cherepova, “Melting diagram of cobalt-rich alloys in the system C–Co–Nb,” Chem. Metal Alloys, No. 8, 83–90 (2015).Google Scholar
  2. 2.
    G. P. Dmitrieva, T. S. Cherepova, T. A. Kosorukova, and V. I. Nichiporenko, “Structure and properties of a wear-resistant alloy based on cobalt with niobium carbide,” Metallofiz. Noveish. Tekhnol.,37, No. 7, 973–986 (2015).Google Scholar
  3. 3.
    T. S. Cherepova, H. P. Dmytrieva, A. V. Nosenko, and O. M. Semirha, “Wear-resistant alloy for the protection of contact surfaces of the working blades of aircraft engines against oxidation at high temperatures,” Nauka Innovats.,10, No. 4, 22–31 (2014).CrossRefGoogle Scholar
  4. 4.
    V. A. Leont’ev, S. D. Zalichikhis, E. V. Kondratyuk, and V. E. Zamkovoi, “Restoration of the serviceability of GTE by using new technologies and materials,” Vestn. Dvigatelestroen., No. 4, 99–103 (2006).Google Scholar
  5. 5.
    G. M. Peichev, V. E. Zamkovoi, and N. V. Andreichenko, “Comparative characteristics of wear-resistant alloys intended for strengthening shroud platforms of the working blades of gas-turbine engines,” Vestn. Dvigatelestroen., No. 2, 123–125 (2009).Google Scholar
  6. 6.
    A. K. Shurin, O. M. Barabash, G. P. Dmitrieva, V. E. Panarin, and T. N. Legkaya, “Structure of the eutectic pseudobinary alloys of transition metals with interstitial phases,” Metally, No. 6, 183–187 (1974).Google Scholar
  7. 7.
    E. K. Storms, The Refractory Carbides, Academic Press, New York (1967).Google Scholar
  8. 8.
    Е. N. Kablov, N. V. Petrushin, L. B. Vasilenok, and G. I. Morozova, “Rhenium in heat-resistant nickel alloys for the blades of gas turbines,” Materialovedenie, No. 12, 23–29 (2000).Google Scholar
  9. 9.
    A. K. Shurin, T. S. Cherepova, N. V. Andreichenko, and V. E. Zamkovyi, Alloy Based on Cobalt [in Ukrainian], Patent of Ukraine for a Useful Model No. 39450, Publ. on 25.02.2009; Bull. No. 4.Google Scholar
  10. 10.
    V. S. Zolotarevskii, Mechanical Properties of Metals [in Russian], MISIS, Moscow (1998).Google Scholar
  11. 11.
    T. S. Cherepova and H. P. Dmytrieva, Heat-Resistant Cobalt Alloy [in Ukrainian], Patent of Ukraine for a Useful Model No. 105154, Publ. on 10.04.2014; Bull. No. 7.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • H. P. Dmytrieva
    • 1
    Email author
  • Т. S. Cherepova
    • 1
  • Т. А. Kosorukova
    • 1
  • Т. V. Pryadko
    • 1
  1. 1.Kurdyumov Institute of Metal PhysicsUkrainian National Academy of SciencesKyivUkraine

Personalised recommendations