Advertisement

Materials Science

, Volume 54, Issue 3, pp 412–420 | Cite as

Elevation of the Structural Strength of Welded Joints of Sheets Made of Alloys of the Al–Cu–Mg System

  • Yu. V. Holovatyuk
  • A. H. Poklyats’kyi
  • O. P. Ostash
  • T. M. Labur
Article
  • 5 Downloads

We study welded joints of 2 mm-thick sheets of D16T aluminum alloy (an analog of the 2024-T3 alloy used abroad), which is now not recommended for welding. The joints are obtained by the friction stir welding. It is shown that the complex structural strength parameter determined by the strength and cyclic crack-growth resistance of the weld metal of these joints is 2.4 times higher than for the base metal and 3.7–12 times higher than for the weld metal of D16 alloy joints obtained by using different technologies of welding and thermal treatment.

Keywords

aluminum alloy friction stir welding strength cyclic crack-growth resistance structural strength diagram 

References

  1. 1.
    V. V. Panasyuk (editor), Fracture Mechanics and Strength of Materials, O. P. Ostash, Structure of Materials and Fatigue Durability of Structural Elements [in Ukrainian], Vol. 15, Spolom, Lviv (2015).Google Scholar
  2. 2.
    O. N. Romaniv, Fracture Toughness of Structural Steels [in Russian], Metallurgiya, Moscow (1979).Google Scholar
  3. 3.
    O. P. Ostash, O. A. Haivorons’kyi, V. D. Poznyakov, and V. V. Kulyk, A Method of Thermal Treatment of High-Strength Low-Alloy Carbon Steels [in Ukrainian], Patent of Ukraine No. 105440, Publ. 25.03.2016, Bull. No. 6.Google Scholar
  4. 4.
    Joint Aviation Requirements, JAR 25.571, (1998).Google Scholar
  5. 5.
    V. M. Beletskii and G. A. Krivov, Aluminum Alloys (Composition, Properties, Technology, Application) [in Russian], Edited by I. N. Fridlyander, Komintekh, Kiev (2005).Google Scholar
  6. 6.
    V. V. Panasyuk (editor), Fracture Mechanics and Strength of Materials, O. P. Ostash, V. M. Fedirko, V. M. Uchanin, S. A. Bychkov, O. G. Molyar, O. I. Semenets’, V. S. Kravets’, and V. Ya. Derecha, Strength and Durability of Aviation Materials and Structural Elements [in Ukrainian], Vol. 9, Spolom, Lviv (2007).Google Scholar
  7. 7.
    A. Squillare, A. De Fenzo, G. Giorleo, and F. Bolluci, “A comparison between FSW and TIG welding techniques: modifications of microstructure and pitting corrosion resistance in AA 2024-T3 butt joints,” J. Mater. Process Tech., 152, 97–105 (2004).Google Scholar
  8. 8.
    C. Genevois, A. Deschamps, A. Denquin, and B. Doisneau-Cootignies, “Quantitative investigation of precipitations and mechanical behavior for AA 2024 friction stir welds,” Acta Mater., 53, 4447–4458 (2005).Google Scholar
  9. 9.
    A. Scialpi, L. De Filipps, and P. Cavaliere, “Influence of shoulder geometry on microstructure and mechanical properties of friction stir welded 6082 aluminum alloy,” Mater. Design, 28 (4), 1124–1129 (2007).CrossRefGoogle Scholar
  10. 10.
    N. J. Woodward, I. M. Richardson, and A. Thomas, “Variable polarity plasma arc welding of 6.35 mm aluminum alloys: parameter development and preliminary analysis,” Sci. Technol. Welding Joining, 5 (1), 21–25 (2000).CrossRefGoogle Scholar
  11. 11.
    T. M. Labur, O. P. Ostash, Yu. V. Holovatyuk, V. A. Koval’, and V. S. Shynkarenko, “Influence of alloying and thermal treatment on the strength and cyclic crack resistance of welded joints of alloys of the Al–Cu–Mg system. Part 1,” Fiz.-Khim. Mekh. Mater., 53, No. 2, 7–15 (2017); English translation : Mater. Sci., 53, No. 2, 131–140 (2017).Google Scholar
  12. 12.
    T. M. Labur, O. P. Ostash, Yu. V. Holovatyuk, V. A. Koval’, and V. S. Shynkarenko, “Influence of alloying and thermal treatment on the strength and cyclic crack resistance of welded joints of alloys of the Al–Cu–Mg system. Part 2,” Fiz.-Khim. Mekh. Mater., 53, No. 4, 28–33 (2017); English translation : Mater. Sci., 53, No. 4, 453–459 (2017).Google Scholar
  13. 13.
    W. M. Thomas, E. D. Nicholas, J. C. Needham, M. G. Church, P. Templesmith, and C. J. Dawes, Friction Stir Butt Welding, Int. Patent Application No. PCT/GB 92/02203; GB Patent Application, No. 9125978.8, Publ. (1991).Google Scholar
  14. 14.
    G. Bussu and P. E. Irving, “The role of residual stress and heat affected zone properties on fatigue crack propagation in friction stir welded 2024-T351 aluminum joints,” Int. J. Fatigue, 25, 77–88 (2003).Google Scholar
  15. 15.
    J. Defalco, “Friction stir welding vs. fusion welding,” Welding J., No. 3, 42–44 (2006).Google Scholar
  16. 16.
    M. Enomoto, “Friction stir welding: research and industrial applications,” Welding Int., No. 5, 341–345 (2003).Google Scholar
  17. 17.
    Y. Sato, “Relationship between mechanical properties and microstructure in friction stir welded Al alloys,” J. Japan Welding Soc., No. 8, 33–36 (2002).Google Scholar
  18. 18.
    T. Shibayanagi, “Microstructural aspects in friction stir welding,” J. Japan Inst. Light Met., No. 9, 416–423 (2007).Google Scholar
  19. 19.
    T. M. Labur, O. P. Ostash, Yu. V. Holovatyuk, V. M. Uchanin, M. R. Yavors’ka, M. P. Pashulya, V. A. Koval’, and V. S. Shynkarenko, “Influence of the space orientation of joints in the process of welding on the strength and cyclic crack resistance of welded joints,” Fiz.-Khim. Mekh. Mater., 52, No. 2, 29–34 (2016); English translation : Mater. Sci., 52, No. 2, 180–187 (2016).Google Scholar
  20. 20.
    A. Ya. Ishchenko and A. G. Poklyats’kyi, A Tool for the Friction Stir Welding of Aluminum Alloys [in Ukrainian], Patent of Ukraine No. 54096, Publ. 25.10.2010; Bull. No. 20.Google Scholar
  21. 21.
    O. Ostash, V. Uchanin, J. Semenets, Yu. Holovatyuk, L. Kovalchuk, and V. Derecha, “Evaluation of aluminum alloys degradation in aging aircraft,” Res. Nondestruct. Evaluat., 29, No. 3, 156–166 (2018).CrossRefGoogle Scholar
  22. 22.
    GOST 6996-66. Welded Joints. Methods of Mechanical Tests [in Russian], Izd. Standartov, Moscow (1967).Google Scholar
  23. 23.
    Standard Test Method for Measurement of Fatigue Crack Growth Rates, ASTM Standards, E647-93.Google Scholar
  24. 24.
    H. Aydin, A. Bayram, and I. Durgun, “The effect of post-weld heat treatment on the mechanical properties of 2024-T4 friction stirwelded joints,” Mater. Des., 31, 2568–2577 (2010).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yu. V. Holovatyuk
    • 1
  • A. H. Poklyats’kyi
    • 2
  • O. P. Ostash
    • 1
  • T. M. Labur
    • 2
  1. 1.Karpenko Physicomechanical InstituteUkrainian National Academy of SciencesLvivUkraine
  2. 2.E. Paton Institute of Electric WeldingUkrainian National Academy of SciencesKievUkraine

Personalised recommendations