Advertisement

Materials Science

, Volume 54, Issue 2, pp 286–294 | Cite as

Statistical Vector-Tensor Analysis of Vibrations of a Centrifuge with Developed Defect of the Rotating Unit

  • I. I. Mats’ko
  • I. M. Yavors’kyi
  • R. M. Yuzefovych
  • P. O. Semenov
Article
  • 5 Downloads

The structure of estimations of the linear and quadratic invariants of the correlation tensor function of stochastic vibrations of a centrifuge and their amplitude spectra are analyzed by the methods of coherent and component analyses for vector periodically correlated random processes. It is shown that the use of invariants enables us to improve the efficiency of diagnostics of vibrations, to determine the space variations of vibration loads in the case of appearance of a defect, and to localize this defect.

Keywords

vector periodically correlated random processes vibrations of a centrifuge correlation invariants moving defect space properties Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 54, No. 2, pp. 140–147, March–April, 2018. 

References

  1. 1.
    I. M. Yavors’kyi, Mathematical Models and Analysis of Stochastic Vibrations [in Ukrainian], Karpenko Physicomechanical Institute, Ukrainian National Academy of Sciences, Lviv (2013).Google Scholar
  2. 2.
    І. I. Mats’ko, І. M. Yavors’kyi, R. M. Yuzefovych, and V. B. Shevchyk, “Invariant correlation analysis of the vibration of rolling bearing with defects on its outer and inner races,” Fiz.-Khim. Mekh. Mater., 52, No. 6, 109–117 (2016); English translation : Mater. Sci., 52, No. 6, 866–874 (2017).Google Scholar
  3. 3.
    I. M. Yavorskyj, I. Y. Matsko, R. M. Yuzefovych, and O. Yu. Dzeryn, “Vectorial periodically correlated random processes and their covariance invariant analysis,” in: F. Chaari, J. Leskow, A. Napolitano, R. Zimroz, and A. Wylomanska (editors), Cyclistationarity: Theory and Methods, III, Springer, Berlin (2017), pp. 121–150.Google Scholar
  4. 4.
    I. M. Javorskyj, R. M. Yuzefovych, I. Y. Matsko, Z. Zakrzewski, and J. Majewski, “Coherent covariance analysis of periodically correlated random processes for unknown nonstationary period,” Digital Signal Process., 65, 27–51 (2017).Google Scholar
  5. 5.
    I. Javorskyj, “Application of Buys–Ballot scheme in statistical analysis of rhythmic signals,” Radioelectr. Telecomm. Syst., 27 (11), 28–33 (1984).Google Scholar
  6. 6.
    I. Javorskyj, I. Matsko, R. Yuzefovych, and Z. Zakrzewski, “Discrete estimators of characteristics for periodically correlated time series,” Digital Signal Process., 53, 25–40 (2016).Google Scholar
  7. 7.
    I. M. Javorskyj, I. Yu. Isayev, J. Majewski, and R. M. Yuzefovych, “Component covariance analysis for periodically correlated random processes,” Signal Process., 90, 1083–1102 (2010).Google Scholar
  8. 8.
    I. M. Yavorskij, R. M. Yuzefovych, I. I. Mats'ko, and V. B. Shevchyk, “Component correlation analysis of vector periodically nonstationary random processes,” Izv. Vyssh. Uchebn. Zaved. Radioèlektron., 57, No. 9, 29–41 (2014).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • I. I. Mats’ko
    • 1
  • I. M. Yavors’kyi
    • 1
    • 2
  • R. M. Yuzefovych
    • 1
    • 3
  • P. O. Semenov
    • 4
  1. 1.Karpenko Physicomechanical InstituteUkrainian National Academy of SciencesLvivUkraine
  2. 2.University of Technology and Life SciencesBydgoszczPoland
  3. 3.“L’vivs’ka Politekhnika National UniversityLvivUkraine
  4. 4.“PORTTEKHEKSPERT” CompanyIzmailUkraine

Personalised recommendations