Materials Science

, Volume 52, Issue 1, pp 56–61 | Cite as

Wear Resistance of VT22 Titanium Alloy After Nitriding Combined with Heat Treatment

  • I. M. PohrelyukEmail author
  • M. V. Kindrachuk
  • S. M. Lavrys’

We study the influence of the modes of nitriding combined with standard heat treatment on the wear resistance of VT22 titanium alloy. It is shown that the saturation of nitrogen at a temperature of 750°C for 3 h in the second stage of the standard procedure of heat treatment of the alloy leads to a decrease in its hardness and an improvement of the quality of the surface hardened layer, which guarantees higher triboengineering characteristics of the friction couple with BrAZhN-10-4-4 bronze than in the case of saturation at 820°C, 1 h + 750°C, 3 h in the first and second stages of the standard heat treatment.


VT22 titanium alloy heat treatment nitriding surface hardening friction wear intensity surface roughness 


  1. 1.
    O. P. Ostash, V. M. Fedirko, V. M. Uchanin, S. A. Bychkov, O. G. Molyar, O. I. Semenets’, V. S. Kravets’, and V. Ya. Derecha, Strength and Durability of Aircraft Materials and Structural Elements, in: V. V. Panasyuk (Ed.), Fracture Mechanics and Strength of Materials [in Ukrainian], Vol. 9, Spolom, Lviv (2007).Google Scholar
  2. 2.
    I. Pohrelyuk and V. Fedirko, Thermochemical treatment of titanium alloys—Nitriding,” in: A. K. M. Nurul Amin (editor), Titanium Alloys – Towards Achieving Enhanced Properties for Diversified Applications, InTech, Rijeka (2012), pp. 141–174.Google Scholar
  3. 3.
    S. L. Antonyuk, A. G. Molyar, A. N. Kalinyuk, and V. N. Zamkov, “Titanium alloys for the aircraft industry of Ukraine,” Sovrem. Elektromet., No. 1, 10–14 (2003).Google Scholar
  4. 4.
    V. M. Fedirko, I. M. Pohrelyuk, V. A. Trofimov, O. G. Molyar, and T. M. Kravchyshyn, A Method for Processing of Titanium Alloys [in Ukrainian], Patent 9692 of Ukraine, No. u200502148, Application of 09.03.2005, Publ. on 17.10.2005, Bull. No. 10.Google Scholar
  5. 5.
    V. N. Moiseev, Yu. I. Zakharov, Yu. G. Kirillov, Yu. M. Dolzhanskii, and T. G. Danilina, “Heat treatment of VT22 titanium alloy,” Metalloved. Term. Obrab. Metal., No. 3, 46–49 (1990).Google Scholar
  6. 6.
    A. I. Khorev and M. A. Khorev, “Titanium alloys: application and prospects of their development,” Titan, No. 1, 40–53 (2005).Google Scholar
  7. 7.
    S. G. Glazunov and V. N. Moiseev, Structural Titanium Alloys [in Russian], Metallurgiya, Moscow (1974).Google Scholar
  8. 8.
    A. G. Bratukhin, B. A. Kolachev, V. V. Sadkov, V. D. Talalaev, and A. A. Veselov, Technology of Production of Aircraft Titanium Structures [in Russian], Mashinostroenie, Moscow (1995).Google Scholar
  9. 9.
    N. F. Anoshkin, G. A. Bochvar, V. A. Livanov, I. S. Pol’kin, and V. N. Moiseev, Metallography of Titanium Alloys [in Russian], Metallurgiya, Moscow (1980).Google Scholar
  10. 10.
    V. V. Ostapchuk and N. I. Semishov, “Influence of the modes of hardening heat treatment on the structure and properties of VT22 titanium alloy,” Problems of Design and Production of Structures of the Flying Vehicles, No. 2, 38–43 (2010).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • I. M. Pohrelyuk
    • 1
    Email author
  • M. V. Kindrachuk
    • 2
  • S. M. Lavrys’
    • 1
  1. 1.Karpenko Physicomechanical InstituteUkrainian National Academy of SciencesLvivUkraine
  2. 2.National Aviation UniversityKievUkraine

Personalised recommendations