Materials Science

, Volume 49, Issue 1, pp 102–109 | Cite as

Reduction of WO3 to WC nanoparticles by the reflux reaction


Tungsten carbide (WC) is an important material mostly used for cutting-tool applications. The reduction of WO3 to WC is realized by using several techniques. The existing chemical processes involved in its reduction are long and energy consuming. In our work, we make efforts to reduce WO3 to WC by the reflux reaction technique. The composite obtained after the reflux reaction is analyzed to check the feasibility of conversion of WO3 to WC. The preliminary study demonstrates the feasibility of this conversion. The proposed technique seems to be promising and cost-effective for the low-temperature synthesis of ultrafine WC particles. The synthesized powders are studied with the help of X-ray diffraction, scanning electron microscope, energy dispersive X-rays, and transmission electron microscopy for the phase identification and microstructural analyses.


tungsten carbide transmission electron microscopy nanoparticles 


  1. 1.
    I. Cha Seung, H. Hong Soon, H. Ha Gook, and Byung K. Kim, “Mechanical properties of WC–10Co cemented carbides sintered from nanocrystalline spray conversion processed powders,” Int. J. Refract. Met. Hard. Mater., 19, No. 4–6, 397–403 (2001).Google Scholar
  2. 2.
    J. M. Adeff Sanchez, A. Ordoneza, and R. Gonzalez, “HIP after sintering of ultrafine WC–Co hard metals,” Int. J. Refract. Met. Hard. Mater., 23, No. 3, 193–198 (2005).CrossRefGoogle Scholar
  3. 3.
    M. Sherif El-Eskandarany, A. A. Mahday, H. A. Ahmed, and A. H. Amer, “Synthesis and characterizations of ball-milled nanocrystalline WC and nanocomposite WC–Co powders and subsequent consolidations,” J. Alloy Comp., 312, No. 1–2, 315–325 (2000).CrossRefGoogle Scholar
  4. 4.
    K. Jia, T. E. Fischer, and B. Gallois, “Microstructure, hardness and toughness of nanostructured and conventional WC–Co composites,” Nanostruct. Mater., 10, No. 5, 875–891 (1998).CrossRefGoogle Scholar
  5. 5.
    K. Jia and T. E. Fischer, “Abrasion resistance of nanostructured and conventional cemented carbides,” Wear, 200, 206–214 (1996).CrossRefGoogle Scholar
  6. 6.
    C. S. Pande and K. P. Cooper, “Nanomechanics of Hall–Petch relationship in nanocrystalline materials,” Progr. Mater. Sci., 54, 689–706 (2009).CrossRefGoogle Scholar
  7. 7.
    F. Zhang, J. Shen, and J. Sun, “Processing and properties of carbon nanotubes-nano-WC–Co composites,” Mat. Sci. Eng. A, 38, Nos. 1–2, 86–91 (2004).CrossRefGoogle Scholar
  8. 8.
    L. E. McCandlish, B. H. Kear, and S. J. Bhatia, Spray Conversion Process for the Production of Nanophase Composite Powders, US Patent 535226 (1994).Google Scholar
  9. 9.
    L. Gao, B. H. Kear, and P. Seegopaul, Method of Forming Tungsten Particles, US Patent 5919428 (1999).Google Scholar
  10. 10.
    P. Seegopaul and L. Gao, Method of Forming Nanograin Tungsten Carbide and Recycling Tungsten Carbide, US patent 6524366 (2003).Google Scholar
  11. 11.
    B. K. Kim, G. G. Ha, and Y. Woo, Method of Production WC/Co Cemented Carbide Using Grain Growth Inhibitor, US Patent 6511551 (2003).Google Scholar
  12. 12.
    G. Lee, G. H. Ha, and B. K. Kim, “Synthesis of nanostructured W-base composite powders by chemical processes,” J. Korean. Inst. Metal. Mater., 37, No. 10, 1233–1237 (1999).Google Scholar
  13. 13.
    X. M. Ma, Z. Ling, J. Gang, and Y. D. Dong, “Preparation and structure of bulk nanostructured WC–Co alloy by high energy ball-milling,” J. Mater. Sci. Lett., 16, No. 12, 968–970 (1997).CrossRefGoogle Scholar
  14. 14.
    R. Uribe, C. Baudin, L. Mazerolles, and D. Michel, “Sub-micron sized Al2TiO5 powders prepared by high-energy ball milling,” J. Mater. Sci., 36, No. 21, 5105–5113 (2001).CrossRefGoogle Scholar
  15. 15.
    F. L. Zhang, C. Y. Wang, and M. Zhu, “Nanostructured WC/Co composite powder prepared by high energy ball milling,” Scripta. Mater., 49, No. 11, 1123–1128 (2003).CrossRefGoogle Scholar
  16. 16.
    H. J. Fecht, “Synthesis and properties of nanocrystalline metals and alloys prepared by mechanical attrition,” Nanostruct. Mater., 1, No. 2, P.125–130 (1992).CrossRefGoogle Scholar
  17. 17.
    H. J. Fecht, E. Hellstern, Z. Fu, and W. L. Johnson, “Nanocrystalline metals prepared by high-energy ball milling,” Metall. Mater. Trans. A, 21, No. 9, 2333–2337 (1990).CrossRefGoogle Scholar
  18. 18.
    R. Porat, S. Berger, and A. Rosen, “Sintering behavior and mechanical properties of nanocrystalline WC/Co,” Mater. Sci. Forum, 225–227, No. 1, 629–634 (1996).CrossRefGoogle Scholar
  19. 19.
    B. G. Butler, J. Lu, Z. G. Z. Fang, and R. K. Rajamani, “Production of nanometric tungsten carbide powders by planetary milling,” Int. J. Powder Metall., 43, No. 1, 35–43 (2007).Google Scholar
  20. 20.
    G. L. Tan and X. J. Wu, “Mechanochemical synthesis of nanocrystalline tungsten carbide powders,” Powder Metall., 41, No. 4, 300–302 (1998).Google Scholar
  21. 21.
    Z. G. Ban and L. L. Shaw, “Synthesis and processing of nanostructured WC–Co materials,” J. Mater. Sci., 37, No. 16, 3397–3403 (2002).CrossRefGoogle Scholar
  22. 22.
    J. Hojo, T. Oku, and A. Kato, “Tungsten carbide powders produced by the vapor phase reaction of the WCl6–CH4 –H2 system,” J. Less-Common Metal., 59, No. 1, 85–95 (1978).CrossRefGoogle Scholar
  23. 23.
    M. Fitzsimmons and V. K. Sarin, “Comparison of WCl6–CH4 –H2 and WF6–CH4 –H2 systems for growth of WC coatings,” Surf. Coat. Technol., 76, No. 1–3, 250–255 (1995).CrossRefGoogle Scholar
  24. 24.
    J. C. Kim and B. K. Kim, “Synthesis of nanosized tungsten carbide powder by the chemical vapor condensation process,” Scripta. Mater., 50, No. 7, 969–972 (2004).CrossRefGoogle Scholar
  25. 25.
    X. Tang, R. Haubner, B. Lux, and B. Kieffer, “Preparation of ultrafine CVD WC powders deposited from WCl6 gas mixtures,” J. Phys. IV Colloq., 510, 13–20 (1995).Google Scholar
  26. 26.
    C. W. Won, B. S. Chun, and H. Y. Sohn, “Preparation of ultrafine tungsten carbide powder by CVD method from WCl6–C2H2–H2 mixtures,” J. Mater. Res., 8, No. 10, 2702–2708 (1993).CrossRefGoogle Scholar
  27. 27.
    G. Leclercq, M. Kamal, J. M. Giraudon, and P. Devassine, “Study of the preparation of bulk powder tungsten carbides by temperature programmed reaction with CH4 + H2 mixtures,” J Catal., 158, 142 (1996).CrossRefGoogle Scholar
  28. 28.
    F. F. P. Medeiros, S. A. De Oliveira, C. P. De Souza, et al., “Synthesis of tungsten carbide through gas-solid reaction at low temperatures,” Mater. Sci. A, 315, No. 1–2, 58–62 (2001).CrossRefGoogle Scholar
  29. 29.
    L. Gao and B. H. Kear, “Low temperature carburization of high surface area tungsten powders,” Nanostruct. Mater., 5, No. 5, 555–569 (1995).CrossRefGoogle Scholar
  30. 30.
    H. Y. Sohn, T. Ryu, J. W. Choi, et al., “The chemical vapor synthesis of inorganic nanopowders,” Jom-Us, 59, No. 12, 44–49 (2007).CrossRefGoogle Scholar
  31. 31.
    Y. Moriysohi, M. Futaki, S. Komatsu, and T. Ishigaki, “The preparation and characterization of ultrafine tungsten powder,” J. Mater. Sci. Lett., 16, No. 5, 347–349 (1997).CrossRefGoogle Scholar
  32. 32.
    L. R. Tong and R. G. Reddy, “Synthesis of titanium carbide nanopowders by thermal plasma,” Scripta. Mater., 52, No. 12, 1253–1258 (2005).CrossRefGoogle Scholar
  33. 33.
    A. Kumar, K. Singh, and O. P. Pandey, “Reduction of WO3 to nano-WC by thermochemical reaction route,” Physica. E, 41, 677–684 (2009).CrossRefGoogle Scholar
  34. 34.
    C. S. Barrett and T. B. Massalski, Structure of Metals, Pergamon, Oxford (1980).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.School of Physics and Materials ScienceThapar UniversityPatialaIndia
  2. 2.Sri Guru Granth Sahib World UniversityFatehgarh SahibIndia
  3. 3.National Physical LaboratoryNew DelhiIndia

Personalised recommendations