Materials Science

, Volume 40, Issue 3, pp 305–319 | Cite as

Fracture mechanics and strength of materials: advances and prospects

  • V. V. Panasyuk


We analyze the principal stages of the development of fracture mechanics and strength of materials in the second half of the last century. Our attention is mainly focused on the analysis of the computational models of limiting equilibrium of deformable solid bodies with sharp stress concentrators (cracks), on the development of the methods aimed at evaluation of the stress intensity factors, on the methods and means of experimental determination of the characteristics of crack resistance of the material, on the concepts of initiation and propagation of fatigue cracks, and on the processes of cracking of materials in the zone of cyclic contact of two bodies. New approaches to the evaluation of the period of initiation of fatigue macrocracks near stress concentrators based on the use of the conventional v-K diagrams for a given material are proposed, the influence of working media on the corrosion crack-growth resistance of structural materials is analyzed, and the basic (computational) fatigue crack growth curves for the evaluation of the strength characteristics of high-pressure vessels are constructed. Some promising problems in this field of science are formulated.


Fatigue Stress Intensity Fatigue Crack Fracture Mechanic Stress Intensity Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Panasyuk, V. V. 1991Mechanics of Quasibrittle Fracture of MaterialsNaukova DumkaKiev[in Russian]Google Scholar
  2. 2.
    Panasyuk, V. V. 1993An outline of the development of fracture mechanics and strength-of-materials investigationsInvestigations of Fracture, Strength, and Integrity of Materials and StructuresKarpenko Physicomechanical Institute, Ukrainian Academy of SciencesLviv748Google Scholar
  3. 3.
    Rossmanith, H. P. 1997The struggle for recognition of engineering fracture mechanicsFracture Research in Retrospect (An Anniversary Volume in Honor of G. R. Irwin’s 90th BirthdayBalkema BrookfieldRotterdaminGoogle Scholar
  4. 4.
    Panasyuk, V. V. 2003Fracture mechanics of materials—a new scientific trendPokhodnya, I. K. eds. Promising Materials and TechnologiesVydavnychDim, Kiev501524[in Ukrainian]Google Scholar
  5. 5.
    V. V. Panasyuk (editor), Fracture Mechanics and Strength of Materials. A Handbook [in Russian], Vols. 1–4, Naukova Dumka, Kiev (1988–1990); Vol. 1, V. V. Panasyuk, A. E. Andreikiv, and V. Z. Parton, Foundations of Fracture Mechanics of Materials [in Russian], Naukova Dumka, Kiev (1988); Vol. 2, M. P. Savruk, Stress Intensity Factors in Cracked Bodies [in Russian], Naukova Dumka, Kiev (1988); Vol. 3, S. E. Kovchik and E. M. Morozov, Characteristics of the Short-Term Crack Resistance of Materials and Methods for Their Determination [in Russian], Naukova Dumka, Kiev (1988); Vol. 4, O. N. Romaniv, S. Ya. Yarema, G. N. Nikiforchin, N. A. Makhutov, and M. M. Stadnik, Fatigue and Cyclic Crack-Growth Resistance of Structural Materials [in Russian], Naukova Dumka, Kiev (1990)Google Scholar
  6. 6.
    Yarema, S. Ya., Vitvitskii, P. M., Datsyshin, A. P. 1988First All-Union Conference on the Fracture Mechanics of MaterialsFiz.-Khim. Mekh. Mater.24124126Google Scholar
  7. 7.
    Panasyuk, V. V., Andreikiv, O. E., Lobanov, L. M., Teplin, D. M., Kuzyak, N. V. 1994Fracture Mechanics: Achievements and Problems (Book-Survey MKR-8)Karpenko Physicomechanical Institute, Ukrainian Academy of SciencesLviv[in Ukrainian]Google Scholar
  8. 8.
    Panasyuk, V. V. 1993Deformation Criteria in Fracture Mechanics of MaterialsKarpenko Physicomechanical Institute, Ukrainian Academy of SciencesLviv[in Ukrainian]Google Scholar
  9. 9.
    Griffith, A. A. 1921The phenomena of rupture and flow in solidsTrans. Roy. Soc. London, Ser. A221163198Google Scholar
  10. 10.
    Irwin, G. R. 1957Analysis of stresses and strains near the end of a crack traversing a plateJ. Appl. Mech.24361364Google Scholar
  11. 11.
    V. V. Panasyuk and L. T. Berezhnitskii, “Determination of the ultimate stresses for a plate containing an arcwise crack in tension,” Vopr. Mekh. Real. Tverd. Tela, Issue 3, 3–19 (1964).Google Scholar
  12. 12.
    Panasyuk, V. V., Berezhnitskii, L. T., Kovchik, S. E. 1965Propagation of an arbitrarily oriented rectilinear crackPrikl. Mekh.14855Google Scholar
  13. 13.
    Andreikiv, A. E. 1982Three-Dimensional Problems of the Theory of CracksNaukova DumkaKiev[in Russian]Google Scholar
  14. 14.
    Panasyuk, V. V., Andreikiv, O. E., Kovchik, S. E. 1977Methods for the Evaluation of Crack Resistance of Structural MaterialsNaukova DumkaKiev[in Russian]Google Scholar
  15. 15.
    Frolov, K. V. eds. 1995Mechanics of Catastrophes. Determination of the Characteristics of Crack Resistance of Structural Materials: Methodical RecommendationsKODASMoscow[in Russian]Google Scholar
  16. 16.
    Yarema, S. Ya. 1994Method for the determination of crack-growth rate and the characteristics of crack resistance under cyclic loadingFiz.-Khim. Mekh. Mater.30137152Google Scholar
  17. 17.
    Leonov, M. Ya., Panasyuk, V. V. 1959Propagation of very small cracks in solid bodiesPrikl. Mekh.5391401Google Scholar
  18. 18.
    V. V. Panasyuk, “On the theory of propagation of cracks in deformed brittle bodies,” Dop. Akad. Nauk Ukr. RSR, No. 9, 1185–1188, (1960).Google Scholar
  19. 19.
    Panasyuk, V. V. 1968Limiting Equilibrium of Brittle Cracked BodiesNaukova DumkaKiev[in Russian]Google Scholar
  20. 20.
    Dugdale, D. -S. 1960Yielding of steel sheets containing slitsJ. Mech. Phys. Solids8100108Google Scholar
  21. 21.
    Wells, A. -A. 1961Critical tip opening displacement as fracture criterionProc. of Crack Propagation Symp.1210221CranfieldGoogle Scholar
  22. 22.
    Vytvyts’kyi, P. M., Leonov, M. Ya. 1961On the fracture of a plate containing a slotPrikl. Mekh.7516520Google Scholar
  23. 23.
    Panasyuk, V. V., Savruk, M. P. 1992Plastic strip model in elastic-plastic problems of fracture mechanicsAdv. Mech.15123147Google Scholar
  24. 24.
    Andreikiv, A. E., Darchuk, A. I. 1992Fatigue Fracture and Durability of StructuresNaukova DumkaKiev[in Russian]Google Scholar
  25. 25.
    Guz’, A. N. eds. 1996Mechanics of CompositesA. S. K.KievFracture Mechanics [in Russian]Google Scholar
  26. 26.
    Yarema, S. Ya., Mykytyshyn, S. I. 1975Analytic description of the diagram of fatigue fracture of materialsFiz.-Khim. Mekh. Mater.114754Google Scholar
  27. 27.
    O. P. Ostash and V. V Panasyuk, “A unified approach to fatigue macrocrack initiation and propagation,” Inter. J. Fatigue, No. 25, 703–708 (2003).Google Scholar
  28. 28.
    Ostash, O. P., Panasyuk, V. V., Kostyk, E. M. 1998A unified model of initiation and propagation of fatigue macrocracksFiz.-Khim. Mekh. Mater.34721Google Scholar
  29. 29.
    Pisarenko, G. S. eds. 1980Strength of Materials and Structural Elements Under Extreme ConditionsNaukova DumkaKiev[in Russian]Google Scholar
  30. 30.
    Novikov, N. V., Maistrenko, A. L., Kulakovskii, V. N. 1993Fracture Resistance of Superhard MaterialsNaukova DumkaKiev[in Russian]Google Scholar
  31. 31.
    V. T. Troshchenko, “Stable and unstable fatigue crack propagation in metals,” in: A. Carpinteri (editor), Handbook of Fatigue Crack Propagation in Metallic Structures, Vol. 1, Elsevier, (1994), pp. 581–612.Google Scholar
  32. 32.
    Trufyakov, V. I. 1973Fatigue of Welded JointsNaukova DumkaKiev[in Russian]Google Scholar
  33. 33.
    Lobanov, L. M., Makhnenko, V. I., Trufyakov, V. I. 1998Development of numerical and technological methods aimed at the elevation of strength, durability, and reliability of produced welded structuresProc. of the Internat. Conf. “Welding and Related Technologies in the XXI Century”Paton Institute for Electric Welding, Ukrainian National Academy of SciencesKiev396[in Russian]Google Scholar
  34. 34.
    Troshchenko, V. T. eds. 1993Deformation and Fracture Resistance of Materials. A HandbookNaukova DumkaKiev[in Russian]Google Scholar
  35. 35.
    F. Franek, W. Bartz, and A. Pauschitz (editors), Tribology 2001: Scientific Achievements, Industrial Applications, Future Challenges (Plenary and Session Key Papers from the Second World Tribology Congress, Vienna, Austria, September 2001)(2001).Google Scholar
  36. 36.
    Panasyuk, V. V., Datsyshyn, O. P., Marchenko, H. P. 1995To crack propagation theory under rolling contactEng. Fract. Mech.52179191Google Scholar
  37. 37.
    Datsyshyn, O. P., Panasyuk, V. V. 2001Pitting of the rolling bodies contact surfaceWear2511121347–1355Google Scholar
  38. 38.
    Dmytrakh, I. M., Panasyuk, V. V. 1999Influence of Corrosive Media on the Local Fracture of Metals Near Stress ConcentratorsKarpenko Physicomechanical Institute, Ukrainian National Academy of SciencesLviv[in Ukrainian]Google Scholar
  39. 39.
    Panasyuk, V. V., Ratych, L. V., Dmytrakh, I. M. 1984Fatigue crack growth in corrosive environmentsFatigue Fract. Eng. Mech. Struct.7111Google Scholar
  40. 40.
    Bamford, W. H. 1979Application of corrosion fatigue growth rate to integrity analysis in nuclear reactor vesselsJ. Eng. Mater. Technol.101182190Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • V. V. Panasyuk
    • 1
  1. 1.Karpenko Physicomechanical InstituteUkrainian Academy of SciencesLviv

Personalised recommendations