Marketing Letters

, Volume 26, Issue 2, pp 115–125 | Cite as

Multiplicity of equilibria and information structures in empirical games: challenges and prospects

Session at the 9th Triennial Choice Symposium
  • Ron N. Borkovsky
  • Paul B. Ellickson
  • Brett R. Gordon
  • Victor Aguirregabiria
  • Pedro Gardete
  • Paul Grieco
  • Todd Gureckis
  • Teck-Hua Ho
  • Laurent Mathevet
  • Andrew Sweeting
Article

Abstract

Empirical models of strategic games are central to much analysis in marketing and economics. However, two challenges in applying these models to real-world data are that such models often admit multiple equilibria and that they require strong informational assumptions. The first implies that the model does not make unique predictions about the data, and the second implies that results may be driven by strong a priori assumptions about the informational setup. This article summarizes recent work that seeks to address both issues and suggests some avenues for future research.

Keywords

Static discrete games Dynamic games Structural estimation Multiplicity of equilibria Information structures Learning 

References

  1. Aguirregabiria, V. & MagesanA. (2012). Identification and estimation of dynamics games when players’ beliefs are not in equilibrium. Working paper, University of Toronto.Google Scholar
  2. Bajari, P., Hong, H., Krainer, J., & Nekipelov, D. (2010a). Estimating static models of strategic interactions. Journal of Business and Economic Statistics, 28(4).Google Scholar
  3. Bajari, P., Hong, H., & Ryan, S. (2010b). Identification and estimation of discrete games of complete information. Econometrica, 78(5), 1529–1568.CrossRefGoogle Scholar
  4. Berry, S., Levinsohn, J., & Pakes, A. (1999). Voluntary export restraints on automobiles: evaluating a trade policy. American Economic Review, 89(3), 400–430.CrossRefGoogle Scholar
  5. Besanko, D., Doraszelski, U., Kryukov, Y., & Satterthwaite, M. (2010a). Learning-by-doing, organizational forgetting, and industry dynamics. Econometrica, 78(2), 453–508.CrossRefGoogle Scholar
  6. Besanko, D., Doraszelski, U., Lauren, L., & Satterthwaite, M. (2010b). On the role of demand and strategic uncertainty in capacity investment and disinvestment dynamics. International Journal of Industrial Organization, 28(4), 383–389.CrossRefGoogle Scholar
  7. Besanko, D., Doraszelski, U., Lauren, L., & Satterthwaite, M. (2010c). Lumpy capacity investment and disinvestment dynamics. Operations Research, 58(4), 1178–1193.CrossRefGoogle Scholar
  8. Besanko, D., Doraszelski, U., & Kryukov, Y. (2013). The economics of predation: what drives pricing when there is learning-by-doing?”American. Economic Review, 104(3), 868–897.CrossRefGoogle Scholar
  9. Borkovsky, R., Doraszelski, U., & Kryukov, S. (2010). A user’s guide to solving dynamic stochastic games using the homotopy method. Operations Research, 58(4), 1116–1132.CrossRefGoogle Scholar
  10. Borkovsky, R., Doraszelski, U., & Kryukov, S. (2012). A dynamic quality ladder duopoly with entry and exit: exploring the equilibrium correspondence using the homotopy method. Quantitative Marketing and Economics, 10(2), 197–229.CrossRefGoogle Scholar
  11. Bresnahan, T. F., & Reiss, P. C. (1991). Empirical models of discrete games. Journal of Econometrics, 48(1–2), 57–82.CrossRefGoogle Scholar
  12. Camerer, C., & Ho, T.-H. (1999). Experience-weighted attraction learning in normal form games. Econometrica, 67, 837–874.CrossRefGoogle Scholar
  13. Camerer, C., Ho, T.-H., & Chong, J.-K. (2002). Sophisticated learning and strategic teaching. Journal of Economic Theory, 104, 137–188.CrossRefGoogle Scholar
  14. Ciliberto, F., & Tamer, E. (2009). Market structure and multiple equilibria in airline markets. Econometrica, 77(6), 1791–1828.CrossRefGoogle Scholar
  15. Doraszelski, U. & Pakes, A. (2007). A framework for applied dynamic analysis in IO. In: J. J. Heckman and E. Leamer (eds.), Handbook of Industrial Organization (Ch. 60), North Holland.Google Scholar
  16. Doraszelski, U., & Satterthwaite, M. (2010). Computable Markov-perfect industry dynamics. Rand Journal of Economics, 41(2), 215–243.CrossRefGoogle Scholar
  17. Doraszelski, U., Lewis, G., Pakes, A. (2014). Just starting out: learning and price competition in a new market. Working paper, Harvard University.Google Scholar
  18. Echenique, F., & Komunjer, I. (2009). Testing models with multiple equilibria by quantile methods. Econometrica, 77(4), 1281–1298.CrossRefGoogle Scholar
  19. Ellickson, P. B., & Misra, S. (2011). Estimating discrete games. Marketing Science, 30(6), 997–1010.CrossRefGoogle Scholar
  20. Erev, I., & Roth, A. (1998). Predicting how people play games: reinforcement learning in experimental games with unique, mixed strategy equilibria. The American Economic Review, 88(4), 848–881.Google Scholar
  21. Ericson, R., & Pakes, A. (1995). Markov-perfect industry dynamics: a framework for empirical work. Review of Economic Studies, 62, 53–82.CrossRefGoogle Scholar
  22. Fershtman, C., & Pakes, A. (2012). Dynamic games with asymmetric information: a framework for empirical work. The Quarterly Journal of Economics, 127(4), 1611–1661.CrossRefGoogle Scholar
  23. Fudenberg, D., & Levine, D. (1998). The Theory of Learning in Games. Cambridge: MIT.Google Scholar
  24. Gardete, Pedro M. (2013). Peer effects in buying behavior: evidence from in-flight purchases. Working paper, Stanford University.Google Scholar
  25. Gedge, C., Roberts, J., & Sweeting, A. (2013). An empirical model of dynamic limit pricing: the airline industry. Working paper, University of Maryland and Duke University.Google Scholar
  26. Grieco, P. (2014). Discrete games with flexible information structures: an application to local grocery markets. RAND Journal of Economics, 45(2), 303–340.Google Scholar
  27. Gureckis, T.M. and Love, B.C. (2013) Reinforcement learning: a computational perspective. working paper, New York University.Google Scholar
  28. Judd, K., Renner, P., & Schmedders, K. (2012). Finding all pure strategy equilibria in games with continuous strategies. Quantitative Economics, 3(2), 289–331.CrossRefGoogle Scholar
  29. Lee, R. & Pakes, A. (2009). Multiple equilibria and selection by learning in an applied setting. Economic Letters.Google Scholar
  30. Mathevet, L. (2013). An axiomatic approach to bounded rationality in repeated interactions: theory and experiments. Working paper, New York University.Google Scholar
  31. Milgrom, P., & Roberts, J. (1982). Limit pricing and entry under incomplete information: an equilibrium analysis. Econometrica, 50(2), 443–459.CrossRefGoogle Scholar
  32. Misra, S. (2013). Markov Chain Monte Carlo for incomplete information discrete games. Quantitative Marketing and Economics, 11(1), 117–153.CrossRefGoogle Scholar
  33. Narayanan, S. (2013). Bayesian estimation of discrete games of complete information. Quantitative Marketing and Economics, 11(1), 39–81.CrossRefGoogle Scholar
  34. Pakes, A., & McGuire, P. (1994). Computing Markov-perfect Nash equilibria: numerical implications of a dynamic differentiated product model. Rand Journal of Economics, 25(4), 555–589.CrossRefGoogle Scholar
  35. Roth, A., & Erev, I. (1995). Learning in extensive-form games: experimental data and simple dynamic models in the intermediate term. Games and Economic Behavior, 8, 164–212.CrossRefGoogle Scholar
  36. Sweeting, A. (2009). The strategic timing of radio commercials: an empirical analysis using multiple equilibria. RAND Journal of Economics, 40(4).Google Scholar
  37. Tamer, E. (2003). Incomplete simultaneous discrete response model with multiple equilibria. Review of Economic Studies, 147-165.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ron N. Borkovsky
    • 1
  • Paul B. Ellickson
    • 2
  • Brett R. Gordon
    • 3
  • Victor Aguirregabiria
    • 1
  • Pedro Gardete
    • 4
  • Paul Grieco
    • 5
  • Todd Gureckis
    • 6
  • Teck-Hua Ho
    • 7
  • Laurent Mathevet
    • 6
  • Andrew Sweeting
    • 8
  1. 1.University of TorontoTorontoCanada
  2. 2.University of RochesterRochesterUSA
  3. 3.Columbia Business SchoolNew YorkUSA
  4. 4.Stanford UniversityStanfordUSA
  5. 5.Pennsylvania State UniversityState CollegeUSA
  6. 6.New York UniversityNew YorkUSA
  7. 7.University of California-BerkeleyBerkeleyUSA
  8. 8.University of MarylandCollege ParkUSA

Personalised recommendations