Marketing Letters

, Volume 23, Issue 2, pp 439–456 | Cite as

Process and context in choice models

  • Moshe Ben-Akiva
  • André de Palma
  • Daniel McFadden
  • Maya Abou-Zeid
  • Pierre-André Chiappori
  • Matthieu de Lapparent
  • Steven N. Durlauf
  • Mogens Fosgerau
  • Daisuke Fukuda
  • Stephane Hess
  • Charles Manski
  • Ariel Pakes
  • Nathalie Picard
  • Joan Walker
Article

Abstract

We develop a general framework that extends choice models by including an explicit representation of the process and context of decision making. Process refers to the steps involved in decision making. Context refers to factors affecting the process, focusing in this paper on social networks. The extended choice framework includes more behavioral richness through the explicit representation of the planning process preceding an action and its dynamics and the effects of context (family, friends, and market) on the process leading to a choice, as well as the inclusion of new types of subjective data in choice models. We discuss the key issues involved in applying the extended framework, focusing on richer data requirements, theories, and models, and present three partial demonstrations of the proposed framework. Future research challenges include the development of more comprehensive empirical tests of the extended modeling framework.

Keywords

Decision making process Context Social networks Econometric models Subjective data 

References

  1. Abou-Zeid, M., & Ben-Akiva, M. (2010). A model of travel happiness and mode switching. In S. Hess, & A. Daly (Eds.), Choice modelling: the state-of-the-art and the state-of-practice. Proceedings from the Inaugural International Choice Modelling Conference. Bingley: Emerald, pp. 289–306.Google Scholar
  2. Akerlof, G., & Kranton, R. (2002). Identity and schooling: some lessons for the economics of education. Journal of Economic Literature, 40, 1167–1201.CrossRefGoogle Scholar
  3. Apps, P. F., & Rees, R. (1997). Collective labor supply and household production. Journal of Political Economy, 105, 178–190.CrossRefGoogle Scholar
  4. Bass, F. (1969). A new product growth model for consumer durables. Management Science, 15(5), 215–227.CrossRefGoogle Scholar
  5. Bateman, I., & Munro, A. (2005). An experiment on risky choice amongst households. The Economic Journal, 115(502), 176–189.CrossRefGoogle Scholar
  6. Ben-Akiva, M. (2010). Planning and action in a model of choice. In S. Hess, & A. Daly (Eds.), Choice modelling: the state-of-the-art and the state-of-practice. Proceedings from the Inaugural International Choice Modelling Conference. Bingley: Emerald, pp. 19–34.Google Scholar
  7. Ben-Akiva, M., McFadden, D., Train, K., Walker, J., Bhat, C., Bierlaire, M., et al. (2002). Hybrid choice models: progress and challenges. Marketing Letters, 13(3), 163–175.CrossRefGoogle Scholar
  8. Berry, S., Levinsohn, J., & Pakes, A. (1995). Automobile prices in market equilibrium. Econometrica, 63, 841–889.CrossRefGoogle Scholar
  9. Berry, S., Levinsohn, J., & Pakes, A. (2004). Differentiated products demand systems from a combination of micro and macro data: the new vehicle market. Journal of Political Economy, 112(1), 68–105.CrossRefGoogle Scholar
  10. Blume, L., Brock, W., Durlauf, S., & Ioannides, Y. (2010). Identification of social interactions. In J. Benhabib, A. Bisin, & M. Jackson (Eds.), Handbook of social economics. Amsterdam: North Holland.Google Scholar
  11. Blundell, R. W., Chiappori, P. A., & Meghir, C. (2005). Collective labor supply with children. Journal of Political Economy, 113(6), 1277–1306.CrossRefGoogle Scholar
  12. Brock, W., & Durlauf, S. (2001). Discrete choice with social interactions. Review of Economic Studies, 68, 235–260.CrossRefGoogle Scholar
  13. Brock, W., & Durlauf, S. (2006). Multinomial choice with social interactions. In L. Blume & S. Durlauf (Eds.), The economy as an evolving complex system III. New York: Oxford University Press.Google Scholar
  14. Browning, M., & Chiappori, P. A. (1998). Efficient intra-household allocation: a general characterization and empirical tests. Econometrica, 66(6), 1241–1278.CrossRefGoogle Scholar
  15. Carneiro, P., Heckman, J., & Masterov, D. (2005). Labor market discrimination and racial differences in premarket factors. Journal of Law and Economics, 48, 1–39.CrossRefGoogle Scholar
  16. Carrasco, J. A., Hogan, B., Wellman, B., & Miller, E. J. (2006). Collecting social network data to study social activity-travel behavior: an egocentric approach. Paper presented at the 85th Transportation Research Board Meeting, Washington, DC.Google Scholar
  17. Chen, Z., & Woolley, F. (2001). A Cournot–Nash model of family decision making. The Economic Journal, 111, 722–748.CrossRefGoogle Scholar
  18. Chiappori, P. A. (1988). Rational household labor supply. Econometrica, 56(1), 63–90.CrossRefGoogle Scholar
  19. Chiappori, P. A. (1992). Collective labor supply and welfare. Journal of Political Economy, 100, 437–467.CrossRefGoogle Scholar
  20. Chiappori, P. A., & Ekeland, I. (2009). The micro economics of efficient group behavior: identification. Econometrica, 77(3), 763–799.CrossRefGoogle Scholar
  21. Coleman, J. S., Katz, E., & Menzel, H. (1966). Medical innovation: a diffusion study. Indianapolis: The Bobbs-Merrill Company.Google Scholar
  22. de Palma, A., Picard, N., & Ziegelmeyer, A. (2011). Individual and couple decision behavior under risk: evidence on the dynamics of power balance. Theory and Decision, 70(1), 45–64.CrossRefGoogle Scholar
  23. Delavande, A. (2008). Pill, patch, or shot? Subjective expectations and birth-control choice. International Economic Review, 49, 999–1042.CrossRefGoogle Scholar
  24. Fukuda, D., & Morichi, S. (2007). Incorporating aggregate behavior in an individual’s discrete choice: an application to analyzing illegal bicycle parking behavior. Transportation Research Part A, 41, 313–325.Google Scholar
  25. Jackson, M. (2008). Social and economic networks. New York: Oxford University Press.Google Scholar
  26. Kahneman, D., & Tversky, A. (1979). Prospect theory: an analysis of decision under risk. Econometrica, 47(2), 263–291.CrossRefGoogle Scholar
  27. Kahneman, D., Wakker, P. P., & Sarin, R. (1997). Back to Bentham? Explorations of experienced utility. Quarterly Journal of Economics, 112(2), 375–405.CrossRefGoogle Scholar
  28. Keating, N. L., Ayanian, J. Z., Cleary, P. D., & Marsden, P. V. (2007). Factors affecting influential discussions among physicians: a social network analysis of a primary care practice. Journal of General Internal Medicine, 22(6), 794–798.CrossRefGoogle Scholar
  29. Kivetz, R., Netzer, O., & Srinivasan, V. (2004). Alternative models for capturing the compromise effect. Journal of Marketing Research, 41, 237–257.CrossRefGoogle Scholar
  30. Manski, C. (1993). Identification of endogenous social effects: the reflection problem. Review of Economic Studies, 60, 531–542.CrossRefGoogle Scholar
  31. Manski, C. (2002). Identification of decision rules in experiments on simple games of proposal and response. European Economic Review, 46, 880–891.CrossRefGoogle Scholar
  32. Manski, C. (2004). Measuring expectations. Econometrica, 72, 1329–1376.CrossRefGoogle Scholar
  33. Manski, C. (2010). When consensus choice dominates individualism: Jensen’s inequality and collective decisions under uncertainty. Quantitative Economics, 1(1), 187–202.CrossRefGoogle Scholar
  34. McFadden, D. (1999). Rationality for economists? Journal of Risk and Uncertainty, 19(1–3), 73–105.CrossRefGoogle Scholar
  35. Neal, D. (2006). Why has black-white skill convergence stopped? In E. Hanushek & F. Welch (Eds.), Handbook of the economics of education. Amsterdam: North Holland.Google Scholar
  36. Ogbu, J. (2003). Black Americans in an affluent suburb. Mahwah: Lawrence Erlbaum Associates.Google Scholar
  37. Walker, J. L., Ehlers, E., Banerjee, I., & Dugundji, E. R. (2011). Correcting for endogeneity in behavioral choice models with social influence variables. Transportation Research Part A, 45(4), 362–374.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Moshe Ben-Akiva
    • 1
  • André de Palma
    • 2
  • Daniel McFadden
    • 3
  • Maya Abou-Zeid
    • 4
  • Pierre-André Chiappori
    • 5
  • Matthieu de Lapparent
    • 6
  • Steven N. Durlauf
    • 7
  • Mogens Fosgerau
    • 8
  • Daisuke Fukuda
    • 9
  • Stephane Hess
    • 10
  • Charles Manski
    • 11
  • Ariel Pakes
    • 12
  • Nathalie Picard
    • 13
  • Joan Walker
    • 14
  1. 1.Massachusetts Institute of TechnologyCambridgeUSA
  2. 2.Ecole Normale Supérieure de CachanCachanFrance
  3. 3.University of California at BerkeleyBerkeleyUSA
  4. 4.American University of BeirutBeirutLebanon
  5. 5.Columbia UniversityNew YorkUSA
  6. 6.Institut Français des Sciences et Technologies des Transports, de l’Aménagement et des RéseauxNoisy-le-Grand CedexFrance
  7. 7.Department of EconomicsUniversity of Wisconsin-MadisonMadisonUSA
  8. 8.Technical University of DenmarkLyngbyDenmark
  9. 9.Tokyo Institute of TechnologyMeguro-kuJapan
  10. 10.Institute for Transport StudiesUniversity of LeedsLeedsUK
  11. 11.Northwestern UniversityEvanstonUSA
  12. 12.Department of EconomicsHarvard UniversityCambridgeUSA
  13. 13.Université de Cergy-PontoiseCergy-Pontoise CedexFrance
  14. 14.University of California at BerkeleyBerkeleyUSA

Personalised recommendations