Marketing Letters

, Volume 19, Issue 3–4, pp 323–336 | Cite as

Towards a brain-to-society systems model of individual choice

  • Laurette Dubé
  • Antoine Bechara
  • Ulf Böckenholt
  • Asim Ansari
  • Alain Dagher
  • Mark Daniel
  • Wayne S. DeSarbo
  • Lesley K. Fellows
  • Ross A. Hammond
  • Terry T-K Huang
  • Scott Huettel
  • Yan Kestens
  • Bärbel Knäuper
  • Peter Kooreman
  • Douglas Spencer Moore
  • Ale Smidts
Article

Abstract

Canonical models of rational choice fail to account for many forms of motivated adaptive behaviors, specifically in domains such as food selections. To describe behavior in such emotion- and reward-laden scenarios, researchers have proposed dual-process models that posit competition between a slower, analytic faculty and a fast, impulsive, emotional faculty. In this paper, we examine the assumptions and limitations of these approaches to modeling motivated choice. We argue that models of this form, though intuitively attractive, are biologically implausible. We describe an approach to motivated choice based on sequential sampling process models that can form a solid theoretical bridge between what is known about brain function and environmental influences upon choice. We further suggest that the complex and dynamic relationships between biology, behavior, and environment affecting choice at the individual level must inform aggregate models of consumer choice. Models using agent-based complex systems may further provide a principled way to relate individual and aggregate consumer choices to the aggregate choices made by businesses and social institutions. We coin the term “brain-to-society systems” choice model for this broad integrative approach.

Keywords

Choice models Dual-process models Agent systems Sequential sampling process models Motivated adaptive behavior Neuroscience Neuroeconomics 

References

  1. Ashby, F. G., & Townsend, J. T. (1986). Varieties of perceptual independence. Psychological Review, 93, 154–179. doi:10.1037/0033-295X.93.2.154.CrossRefGoogle Scholar
  2. Axtell, R. L., et al. (2002). Population growth and collapse in a multiagent model of the Kayenta Anasazi in Long House Valley. Proceedings of the National Academy of Sciences of the United States of America, 99(3), 7275–7279. doi:10.1073/pnas.092080799.CrossRefGoogle Scholar
  3. Bechara, A., & Damasio, A. (2004). The somatic marker hypothesis: A neural theory for economic decisions. Games and Economic Behavior, 1, 1–37 (Special issue on Neuroscience and Economics).Google Scholar
  4. Bernheim, B. D., & Rangel, A. (2004). Addiction and cue-triggered decision processes. The American Economic Review, 94(5), 1558–159. doi:10.1257/0002828043052222.CrossRefGoogle Scholar
  5. Berthoud, H.-R. (2002). Multiple neural systems controlling food intake and body weight. Neuroscience and Biobehavioral Reviews, 26, 393–428. doi:10.1016/S0149-7634(02)00014-3.CrossRefGoogle Scholar
  6. Böckenholt, U. (2007). Thurstonian-based analysis: past, present and future utilities. Psychometrika, 10, 1336–1350.Google Scholar
  7. Broberger, C. (2005). Brain regulation of food intake and appetite: Molecules and networks. Journal of Internal Medicine, 258, 301–327. doi:10.1111/j.1365-2796.2005.01553.x.CrossRefGoogle Scholar
  8. Busemeyer, J. R., & Diederich, A. (2002). Survey of decision field theory. Mathematical Social Sciences, 43, 345–370. doi:10.1016/S0165-4896(02)00016-1.CrossRefGoogle Scholar
  9. Busemeyer, J. R., & Townsend, J. T. (1993). Decision field theory: A dynamic-cognitive approach to decision making in an uncertain environment. Psychological Review, 100, 432–459. doi:10.1037/0033-295X.100.3.432.CrossRefGoogle Scholar
  10. Cacioppo, J. T., Bernston, G. G., Sheridan, J. F., & McClintock, M. K. (2000). Multilevel integrative analysis of human behavior: Social neuroscience and the complementing nature of social and biological approaches. Psychological Bulletin, 126(6), 829–843. doi:10.1037/0033-2909.126.6.829.CrossRefGoogle Scholar
  11. Chen, S., & Chaiken, S. (1999). The heuristic–systematic model in its broader context. In S. Chaiken, & Y. Trope (Eds.), Dual-process theories in social psychology (pp. 73–96). New York: Guildford.Google Scholar
  12. Chintagunta, P., Erdem, T., Rossi, P. E., & Wedel, M. (2006). Structural modeling in marketing: Review and assessment. Marketing Science, 25, 604–616. doi:10.1287/mksc.1050.0161.CrossRefGoogle Scholar
  13. Desmeules, R., Bechara, A., & Dubé, L. (2008). Subjective valuation and asymmetrical motivational systems: Implications of scope insensitivity for decision making. Journal of Behavioral Decision Making, 21, 211–224.CrossRefGoogle Scholar
  14. DeSarbo, W. S., Di Benedetto, C. A., Jedidi, K., & Song, M. (2006). Identifying sources of heterogeneity for empirically deriving strategic types: A constrained finite-mixture structural equation methodology. Management Science, 52, 909–924. doi:10.1287/mnsc.1060.0529.CrossRefGoogle Scholar
  15. Diederich, A. (1997). Dynamic stochastic models for decision making under time constraints. Journal of Mathematical Psychology, 41, 260–274. doi:10.1006/jmps.1997.1167.CrossRefGoogle Scholar
  16. Dubé, L., Le Bel, J., & Lu, J. (2005). Affect asymmetry and comfort food consumption. Physiology & Behavior, 86(4), 559–567. doi:10.1016/j.physbeh.2005.08.023.CrossRefGoogle Scholar
  17. Epstein, J. (2002). Modeling civil violence: An agent-based computational approach. Proceedings of the National Academy of Sciences of the United States of America, 99, 7243–7250. doi:10.1073/pnas.092080199.CrossRefGoogle Scholar
  18. Erden, T., Srinivasan, W., Amaldoss, P., Bajari, H., Che, T., et al. (2005). Theory driven choice models. Marketing Letters, 16, 225–237. doi:10.1007/s11002-005-5887-z.CrossRefGoogle Scholar
  19. Förster, J. (2002). How body feedback influences consumers’ evaluation of products. Journal of Consumer Psychology, 14, 416–426. doi:10.1207/s15327663jcp1404_10.CrossRefGoogle Scholar
  20. Fudenberg, D., & Levine, D. K. (1999). Conditional universal consistency. Games and Economic Behavior, 29, 104–130. doi:10.1006/game.1998.0705.CrossRefGoogle Scholar
  21. Faruk, G., & Pesendorfer, W. (2001). Temptation and Self-Control. Econometrica, 69, 1403–1435.Google Scholar
  22. Hammond, R. A., & Epstein, J. M.(2007). “Exploring price independent mechanisms in the obesity epidemic”. Center on Social and Economic Dynamics Working Paper, p. 48.Google Scholar
  23. Herman, C. P., Roth, D. A., & Polivy, J. (2003). Added effects of the presence of others on food intake: A normative interpretation. Psychological Bulletin, 129(6), 873–886. doi:10.1037/0033-2909.129.6.873.CrossRefGoogle Scholar
  24. Huettel, S. A., Song, A. W., & McCarthy, G. (2005). Decisions under uncertainty: Probabilistic context influences activity of prefrontal and parietal cortices. The Journal of Neuroscience, 25, 3304–3311. doi:10.1523/JNEUROSCI.5070-04.2005.CrossRefGoogle Scholar
  25. Huk, A. C., & Shadlen, M. N. (2005). Neural activity in macaque parietal cortex reflects temporal integration of visual motion signals during perceptual decision making. The Journal of Neuroscience, 25(45), 10420–10436. doi:10.1523/JNEUROSCI.4684-04.2005.CrossRefGoogle Scholar
  26. Johnson, J. G., & Busemeyer, J. R. (2005). A dynamic computational model of preference reversal phenomena. Psychological Review, 112, 841–861. doi:10.1037/0033-295X.112.4.841.CrossRefGoogle Scholar
  27. Kalivas, P. W., & Volkow, N. D. (2005). The neural basis of addiction: A pathology of motivation and choice. American Journal of Psychiatry, 162, 8, 1403.CrossRefGoogle Scholar
  28. Killgore, W. D. S., Young, A. D., Femia, L. A., Bogorodzki, P., Rogowska, J., & Yurgelun-Todd, D. A. (2003). Cortical and limbic activation during viewing of high- versus low-calorie foods. NeuroImage, 19(4), 1381–1394. doi:10.1016/S1053-8119(03)00191-5.CrossRefGoogle Scholar
  29. Klucharev, V., Hytonen, K., Rijpkema, M., Smidts, A., and Fernandexz, G. (2008). An error of being different? Brain mechanisms of social norms. Working Paper, F. C. Donders Center for Cognitive Neuroimaging, Radbout University Nijmegen.Google Scholar
  30. Knutson, B., Rick, S., Wimmer, G. E., Prelec, D., & Lowenstein, G. (2007). Neural predictors of purchases. Neuron, 53, 147–156. doi:10.1016/j.neuron.2006.11.010.CrossRefGoogle Scholar
  31. Laibson, D. (2001). A cue-theory of consumption. The Quarterly Journal of Economics, 116, 81–119. doi:10.1162/003355301556356.CrossRefGoogle Scholar
  32. Loewenstein, G., & O’Donoghue, T. (2004). Animal spirit: Affective and deliberative processes in economic behavior. Worker Paper, Carnegie Mellon University.Google Scholar
  33. McClure, S. M., Li, J., Tomlin, D., Cypert, K. S., Montague, L. M., & Montague, P. R. (2004). Neural correlates of behavioral preference for culturally familiar drinks. Neuron, 44(2), 379–387. doi:10.1016/j.neuron.2004.09.019.CrossRefGoogle Scholar
  34. Mischel, W., Ebbesen, E. B., & Zeiss, A. R. (1972). Cognitive and attentional mechanisms in delay of gratification. Journal of Personality and Social Psychology Bulletin, 21, 204–218.CrossRefGoogle Scholar
  35. O’Doherty, J., et al. (2001). Abstract reward and punishment representations in the human orbitofrontal cortex. Nature Neuroscience, 4, 95–102. doi:10.1038/82959.CrossRefGoogle Scholar
  36. O’Donoghue, T., & Rabin, M. (1999). Doing it now or later. The American Economic Review, 89, 103–124.Google Scholar
  37. Otter, T., Rieskamp, J., Brazell, J. D., Hutchinson, W., Ruan, S., et al. (2008). Psychological processes underlying violations of Luce’s choice axiom. Marketing Letters (this issue).Google Scholar
  38. Padoa-Schioppa, C., & Assad, J. A. (2006). Neurons in the orbitofrontal cortex encode economic value. Nature, 441, 223–226. doi:10.1038/nature04676.CrossRefGoogle Scholar
  39. Petty, R. E., & Cacciopo, J. T. (1986). The elaboration likelihood model of persuasion. In L. berkowitz (Ed.), Advances in experimental social psychology, vol 19 (pp. 123–205). New York: Academic.CrossRefGoogle Scholar
  40. Plassmann, H., O’Doherty, J., Shiv, B., & Rangel, A. (2008). Marketing actions can modulate neural representations of experienced processes. Proceedings of the National Academy of Sciences of the United States of America, 105(3), 1050–1054. doi:10.1073/pnas.0706929105.CrossRefGoogle Scholar
  41. Platt, M. L., & Glimcher, P. W. (1999). Neural correlates of decision variables in parietal cortex. Nature, 400, 233–238. doi:10.1038/22268.CrossRefGoogle Scholar
  42. Read, D., & van Leeuwen, B. (1998). Predicting hunger: The effect of appetite and delay on choice. Organizational Behavior and Human Decision Processes, 76, 189–205. doi:10.1006/obhd.1998.2803.CrossRefGoogle Scholar
  43. Rorie, A. E., & Newsome, W. T. (2005). A general mechanism for decision making in the human brain. Trends in Cognitive Sciences, 9(2), 41–43. doi:10.1016/j.tics.2004.12.007.CrossRefGoogle Scholar
  44. Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of Neurophysiology, 80, 1–27.Google Scholar
  45. Small, D. M., Gotman, M. J., & Dagher, A. (2003). Feeding induced dopamine release in dorsal striatum correlates with meal pleasantness rating in healthy human volunteer. NeuroImage, 19, 1709–1715. doi:10.1016/S1053-8119(03)00253-2.CrossRefGoogle Scholar
  46. Sen, A. (1993). Internal consistency of choice. Econometrica, 61(3), 495–521. doi:10.2307/2951715.CrossRefGoogle Scholar
  47. Sengupta, J., & Zhou, R. (2007). Understanding impulsive eaters’ choice behaviors: The motivational influences of regulatory focus. JMR, Journal of Marketing Research, 44, 297–308. doi:10.1509/jmkr.44.2.297.CrossRefGoogle Scholar
  48. Shiv, B., Bechara, A., Levin, I., Alba, J. W., Bettman, J. R., et al. (2005). Decision neuroscience. Marketing Letters, 16, 375–386. doi:10.1007/s11002-005-5899-8.CrossRefGoogle Scholar
  49. Shiv, B., & Fedorikhin, A. (1999). Heart and mind in conflict: The interplay of affect and cognition in consumer decision making. The Journal of Consumer Research, 26(December), 278–292. doi:10.1086/209563.CrossRefGoogle Scholar
  50. Spitzer, M., Fischbacher, U., Herrberger, B., Gron, G., & Fehr, E. (2007). The neural signature of social norm compliance. Neuron, 48, 175–187.Google Scholar
  51. Strack, F., Werth, L., & Deutsch, R. (2006). Reflective and impulsive determinants of consumer behaviour. Journal of Consumer Psychology, 16(3), 205–216. doi:10.1207/s15327663jcp1603_2.CrossRefGoogle Scholar
  52. Sugrue, L. P., Corrado, G. S., & Newsome, W. T. (2005). Choosing the greater of two goods: Neural currencies for valuation and decision making. Nature Neuroscience, 6, 363–375.CrossRefGoogle Scholar
  53. Volkow, N. D., & O’ Brien, C. P. (2007). Issues for DSM-V: Should obesity be included as a brain disorder? The American Journal of Psychiatry, 164(5), 708–710.CrossRefGoogle Scholar
  54. Wise, R. A. (2004). Dopamine, learning and motivation. Nature Reviews. Neuroscience, 5, 483–494. doi:10.1038/nrn1406.CrossRefGoogle Scholar
  55. Wansink, B. (2006). Mindless eating: Why we eat more than we think. New York: Bantam.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Laurette Dubé
    • 1
  • Antoine Bechara
    • 2
  • Ulf Böckenholt
    • 1
  • Asim Ansari
    • 3
  • Alain Dagher
    • 4
  • Mark Daniel
    • 5
  • Wayne S. DeSarbo
    • 6
  • Lesley K. Fellows
    • 7
  • Ross A. Hammond
    • 8
  • Terry T-K Huang
    • 9
  • Scott Huettel
    • 10
  • Yan Kestens
    • 11
  • Bärbel Knäuper
    • 12
  • Peter Kooreman
    • 13
  • Douglas Spencer Moore
    • 14
  • Ale Smidts
    • 15
  1. 1.Desautels Faculty of ManagementMcGill UniversityMontrealCanada
  2. 2.Brain and Creativity InstituteUniversity of Southern CaliforniaLos AngelesUSA
  3. 3.Columbia Business SchoolNew YorkUSA
  4. 4.The Montreal Neurological InstituteMcGill UniversityMontrealCanada
  5. 5.CHUM– Centre de Recherche, Axe santé des populationsMontrealCanada
  6. 6.Smeal College of Business at the Pennsylvania State UniversityUniversity ParkUSA
  7. 7.Neurology and Neurosurgery, Montreal Neurological Institute and HospitalMontrealCanada
  8. 8.Economic Studies Program, The Brookings InstitutionWashingtonUSA
  9. 9.National Institute of Child Health & Human DevelopmentBethesdaUSA
  10. 10.Department of Psychiatry and Behavioral SciencesDuke UniversityDurhamUSA
  11. 11.Dép. Médicine Sociale and PréventiveUniversité de MontréalMontrealCanada
  12. 12.Department of PsychologyMcGill UniversityMontrealCanada
  13. 13.Department of EconomicsTilburg UniversityTilburgThe Netherlands
  14. 14.School of Kinesiology and Health Studies, Queen’s UniversityKingstonCanada
  15. 15.Rotterdam School of ManagementErasmus University RotterdamTilburgThe Netherlands

Personalised recommendations