Marketing Letters

, 19:337 | Cite as

Beyond conjoint analysis: Advances in preference measurement

  • Oded Netzer
  • Olivier Toubia
  • Eric T. Bradlow
  • Ely Dahan
  • Theodoros Evgeniou
  • Fred M. Feinberg
  • Eleanor M. Feit
  • Sam K. Hui
  • Joseph Johnson
  • John C. Liechty
  • James B. Orlin
  • Vithala R. Rao
Article

Abstract

We identify gaps and propose several directions for future research in preference measurement. We structure our argument around a framework that views preference measurement as comprising three interrelated components: (1) the problem that the study is ultimately intended to address; (2) the design of the preference measurement task and the data collection approach; (3) the specification and estimation of a preference model, and the conversion into action. Conjoint analysis is only one special case within this framework. We summarize cutting edge research and identify fruitful directions for future investigations pertaining to the framework’s three components and to their integration.

Keywords

Preference measurement Conjoint analysis Marketing research 

Notes

Acknowledgments

The authors would like to thank the SEI Center for Advanced Studies in Management at Wharton for partially supporting this research and for supporting the 7th Triennial Choice Conference held at the Wharton School. The first two authors (session co-chairs) and the third to the 12th authors are listed alphabetically.

References

  1. Adamowicz, W., Bunch, D., Cameron, T.-A., Dellaert, B. G. C., Hanneman, M., Keane, M., et al. (2008). Behavioral frontiers in choice modeling. Marketing Letters, DOI 10.1007/s11002-008-9038-1.
  2. Addelman, S. (1962). Symmetrical and asymmetrical fractional factorial plans. Technometrics, 4, 47–58 (February).CrossRefGoogle Scholar
  3. Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 15(6), 734–749.CrossRefGoogle Scholar
  4. Amaldoss, W., Ho, T.-H., Krishna, A., Chen, K.-Y., Desai, P., Iyer, G., et al. (2008). Experiments on strategic choices and markets. Marketing Letters, DOI 10.1007/s11002-008-9040-7.
  5. Ansari, A., Essegaier, S., & Kohli, R. (2000). Internet recommendation systems. Journal of Marketing Research, 37, 363–375 (August).CrossRefGoogle Scholar
  6. Arora, N., & Allenby, G. (1999). Measuring the influence of individual preference structures in group decision making. Journal of Marketing Research, 36(4), 476–487.CrossRefGoogle Scholar
  7. Arora, N., Ghose, A., Hess, J. D., Iyengar, R., Jing, B., Joshi, Y., et al. (2008). Putting one-to-one marketing to work: Personalization, customization and choice. Marketing Letters, in press.Google Scholar
  8. Ben-Akiva, M., Bradley, M., Morikawa, T., Benjamin, J., Novak, T. P., Thomas, P., et al. (1994). Combining revealed and stated preference data. Marketing Letters, 5(4), 335–350.CrossRefGoogle Scholar
  9. Ben-Akiva, M., McFadden, D., Train, K., Walker, J., Bhat, C., Bierlaire, M., et al. (2002). Hybrid choice models, progress and challenges. Marketing Letters, 13(3), 163–175.CrossRefGoogle Scholar
  10. Blattberg, R. C., & George, E. I. (1992). Estimation under profit-driven loss functions. Journal of Business and Economic Statistics, 10, 437–444.CrossRefGoogle Scholar
  11. Bleichrodt, H., & Pinto, J. L. (2000). A parameter-free elicitation of the probability weighting function in medical decision analysis. Management Science, 46(11), 1485–1496.CrossRefGoogle Scholar
  12. Bradlow, E. T. (2005). Current issues and a wish-list for conjoint analysis. Applied Stochastic Models in Business and Industry, 4–5, 319–323.CrossRefGoogle Scholar
  13. Bradlow, E. T., Hu, Y., & Ho, T.-H. (2004). A learning-based model for imputing missing levels in partial conjoint profiles. Journal of Marketing Research, 41(4), 369–381.CrossRefGoogle Scholar
  14. Cattin, P., & Wittink, D. R. (1982). Commercial use of conjoint analysis: a survey. Journal of Marketing, 46(3), 44–53.CrossRefGoogle Scholar
  15. Chaloner, K., & Verdinelli, I. (1995). Bayesian experimental design: a review. Statistical Science, 10(3), 273–304.CrossRefGoogle Scholar
  16. Cui, D., & Curry, D. (2005). Prediction in marketing using the support vector machine. Marketing Science, 24(4), 595–615.CrossRefGoogle Scholar
  17. Dahan, E. (2007). Conjoint adaptive ranking database system. Working paper, University of California at Los Angeles.Google Scholar
  18. Dahan, E., & Hauser, J. R. (2002). The virtual customer. Journal of Product Innovation Management, 19, 332–353.CrossRefGoogle Scholar
  19. Dahan, E., Lo, A., Poggio, T., Chan, N., & Kim, A. (2007a). Securities trading of concepts (STOC). Working paper, University of California at Los Angeles.Google Scholar
  20. Dahan, E., Soukhoroukova, A., & Spann, M. (2007b). Preference markets: Organizing securities markets for opinion surveys with infinite scalability. Working paper, University of California at Los Angeles.Google Scholar
  21. Dahan, E., & Srinivasan, V. (2000). The predictive power of internet-based product concept testing using visual depiction and animation. Journal of Product Innovation Management, 17, 99–109 March.CrossRefGoogle Scholar
  22. De Bruyn, A., Liechty, J. C., Huizingh, E. K. R. E., & Lilien, G. L. (2008). Offering online recommendations with minimum customer input through conjoint-based decision aids. Marketing Science, in press.Google Scholar
  23. DeSarbo, W., Fong, D. K. H., Liechty, J. C., & Coupland, J. C. (2005). Evolutionary preferences/utility functions: a dynamic perspective. Psychometrika, 70(1), 179.CrossRefGoogle Scholar
  24. Ding, M. (2007). An incentive-aligned mechanism for conjoint analysis. Journal of Marketing Research, 44, 214–223 (May).CrossRefGoogle Scholar
  25. Ding, M., & Eliashberg, J. (2007). A dynamic competitive forecasting model incorporating dyadic decision-making. Management Science, 54, 820–834.CrossRefGoogle Scholar
  26. Ding, M., Grewal, R., & Liechty, J. (2005). Incentive-aligned conjoint analysis. Journal of Marketing Research, 42, 67–82 (February).CrossRefGoogle Scholar
  27. Dobson, G., & Kalish, S. (1993). Heuristics for pricing and positioning a product-line using conjoint and cost data. Management Science, 7(2), 107–125.Google Scholar
  28. Erdem, T., Keane, M., Öncü, S., & Strebel, J. (2005). Learning about computers: an analysis of information search and technology choice. Quantitative Marketing and Economics, 3(3), 207–247.CrossRefGoogle Scholar
  29. Evgeniou, T., Boussios, C., & Zacharia, G. (2005). Generalized robust conjoint estimation. Marketing Science, 24(3), 415–429.CrossRefGoogle Scholar
  30. Evgeniou, T., Pontil, M., & Toubia, O. (2007). A convex optimization approach to modeling consumer heterogeneity in conjoint estimation. Marketing Science, 26(6), 805–818.Google Scholar
  31. Fehr, E., & Goette, L. (2007). Do workers work more if the wages are higher: evidence from a randomized field experiment. The American Economic Review, 97(1), 298–317.CrossRefGoogle Scholar
  32. Feit, E. M., Beltramo, M. A., & Feinberg, F. M. (2007). Combining survey and market data to enhance consumer preference models. Working paper, University of Michigan.Google Scholar
  33. Gensler, S., Theysohn, S., Hinz, O., & Skiera, B. (2007). Individually adjusted choice-based conjoint analysis. Working paper, Frankfurt University, Germany.Google Scholar
  34. Gilbride, T. J., & Allenby, G. M. (2004). A choice model with conjunctive, disjunctive, and compensatory screening rules. Marketing Science, 23(3), 391–406.CrossRefGoogle Scholar
  35. Gilbride, T. J., Lenk, P. J., & Brazell, J. D. (2006). Market share constraints and the loss function in choice based conjoint analysis. Working paper, University of Notre Dame.Google Scholar
  36. Gilula, Z., McCulloch, R. E., & Rossi, P. E. (2006). A direct approach to data fusion. Journal of Marketing Research, 43(1), 73–83.CrossRefGoogle Scholar
  37. Ghose, S., & Rao, V. R. (2007). A choice model of bundles features and meta-attributes: An application to product design. Working paper, Cornell University.Google Scholar
  38. Godes, D., & Mayzlin, D. (2004). Using online conversations to study word-of-mouth communication. Marketing Science, 23(4), 545–560.CrossRefGoogle Scholar
  39. Goldenberg, J., Libai, B., & Muller, E. (2002). Riding the saddle: How cross-market communications can create a major slump in sales. Journal of Marketing, 66(2), 1–16.CrossRefGoogle Scholar
  40. Gonzalez, R., & Wu, G. (1999). On the shape of the probability weighting function. Cognitive Psychology, 38, 129–166.CrossRefGoogle Scholar
  41. Green, P. E., Goldberg, S. M., & Montemayor, M. (1981). A hybrid utility estimation model for conjoint analysis. Journal of Marketing, 45, 33–41 (Winter).CrossRefGoogle Scholar
  42. Green, P. E., & Krieger, A. M. (1985). Models and heuristics for product line selection. Marketing Science, 4(1), 1–19.Google Scholar
  43. Green, P. E., Krieger, A. M., & Bansal, P. (1988). Completely unacceptable levels in conjoint analysis: a cautionary note. Journal of Marketing Research, 25, 293–300 (August).CrossRefGoogle Scholar
  44. Green, P. E., & Rao, V. R. (1971). Conjoint measurement for quantifying judgmental data. Journal of Marketing Research, 8, 355–363.CrossRefGoogle Scholar
  45. Green, P. E., & Srinivasan, V. (1990). Conjoint analysis in marketing: New developments with implications for research and practice. Journal of Marketing Research, 54, 3–19 (October).CrossRefGoogle Scholar
  46. Gustafsson, A., Herrmann, A., & Huber, F. (2007). Conjoint measurement: Methods and applications (4th ed.). Berlin: Springer Verlag.Google Scholar
  47. Haaijer, M. E., Kamakura, W. A., & Wedel, M. (2000). Response latencies in the analysis of conjoint choice experiments. Journal of Marketing Research, 37(3), 376–382.CrossRefGoogle Scholar
  48. Haaijer, R., Wedel, M., Vriens, M., & Wansbeek, T. (1998). Utility covariances and context effects in conjoint MNP models. Marketing Science, 17(3), 236–252.Google Scholar
  49. Häubl, G., & Murray, K. B. (2003). Preference construction and preference in digital marketplaces: The role of electronic recommendation agents. Journal of Consumer Psychology, 13, 75–91.CrossRefGoogle Scholar
  50. Häubl, G., & Trifts, V. (2000). Interactive decision aids. Marketing Science, 19(1), 4–21.CrossRefGoogle Scholar
  51. Horsky, D., Misra, S., & Nelson, P. (2006). Observed and unobserved preference heterogeneity in brand-choice models. Marketing Science, 25(4), 322–335.CrossRefGoogle Scholar
  52. Hui, S. K., Bradlow, E. T., & Fader, P. S. (2008a). An integrated model of grocery store shopping path and purchase behavior. Working paper, The Wharton School, University of Pennsylvania.Google Scholar
  53. Hui, S. K., Fader, P. S., & Bradlow, E. T. (2008b). Path data in marketing: An integrative framework and prospectus for model-building. Marketing Science, in press.Google Scholar
  54. Iyengar, R., Jedidi, K., & Kohli, R. (2008). A conjoint approach to multi-part pricing. Journal of Marketing Research, 45(2), 195–210.Google Scholar
  55. Jarnebrant, P., Toubia, O., & Johnson, E. J. (2008). The silver lining effect: Formal analysis and experiments. Working paper, Columbia Business School.Google Scholar
  56. Jedidi, K., & Kohli, R. (2005). Probabilistic subset-conjunctive models for heterogeneous consumers. Journal of Marketing Research, 42(4), 483–494.CrossRefGoogle Scholar
  57. Johnson, R. M. (1987). Adaptive conjoint analysis. In: Sawtooth Software Conference Proceedings, Ketchum, ID: Sawtooth Software, July, 253–265.Google Scholar
  58. Johnson, J., Tellis, G. J., & MacInnis, D. J. (2005). Losers, winners and biased trades. Journal of Consumer Research, 32(2), 324–329.CrossRefGoogle Scholar
  59. Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47(2), 263–292.CrossRefGoogle Scholar
  60. Kim, J. G. (2004). Dynamic heterogeneous choice heuristics: A Bayesian hidden Markov mixture model approach. Working Paper, MIT Sloan School of Management.Google Scholar
  61. Kim, J. G., Menzefricke, U., & Feinberg, F. M. (2005). Modeling parametric evolution in a random utility framework. Journal of Business and Economic Statistics, 23(5), 282–294.CrossRefGoogle Scholar
  62. Kim, J. G., Menzefricke, U., & Feinberg, F. M. (2007). Capturing flexible heterogeneous utility curves: Bayesian spline approach. Management Science, 53(2), 340–354.CrossRefGoogle Scholar
  63. Kivetz, R., Netzer, O., & Srinivasan, V. (2004a). Alternative models for capturing the compromise effect. Journal of Marketing Research, 41(3), 237–257.CrossRefGoogle Scholar
  64. Kivetz, R., Netzer, O., & Srinivasan, V. (2004b). Extending compromise effect models to complex buying situations and other context effects. Journal of Marketing Research, 41(3), 262–268.CrossRefGoogle Scholar
  65. Kohli, R., & Jedidi, K. (2007). Representation and inference of lexicographic preference models and their variants. Marketing Science, 26(3), 380–399.CrossRefGoogle Scholar
  66. Kohli, R., & Sukumar, R. (1990). Heuristics for product-line design using conjoint analysis. Management Science, 36(12), 1464–1478.CrossRefGoogle Scholar
  67. Kuhfeld, W. F., Tobias, R. D., & Garratt, M. (1994). Efficient experimental design with marketing applications. Journal of Marketing Research, 31(4), 545–557.CrossRefGoogle Scholar
  68. Lachaab, M., Ansari, A., Jedidi, K., & Trabelsi, A. (2006). Modeling preference evolution in discrete choice models: a Bayesian state-space approach. Quantitative Marketing and Economics, 4, 57–81.CrossRefGoogle Scholar
  69. Lee, T. Y., & Bradlow, E. T. (2008). Automatic construction of conjoint attributes and levels from online customer reviews. Working paper, The Wharton School, University of Pennsylvania.Google Scholar
  70. Lenk, P. J., DeSarbo, W. S., Green, P. E., & Young, M. R. (1996). Hierarchical Bayes conjoint analysis: recovery of partworth heterogeneity from reduced experimental designs. Marketing Science, 15(2), 173–91.Google Scholar
  71. Liechty, J. C., Fong, D. K. H., & DeSarbo, W. S. (2005). Dynamic models incorporating individual heterogeneity: utility evolution in conjoint analysis. Marketing Science, 24(2), 285–293.CrossRefGoogle Scholar
  72. Liechty, J., Pieters, R., & Wedel, M. (2003). Global and local covert visual attention: evidence from a Bayesian hidden Markov model. Psychometrika, 68, 519–542.CrossRefGoogle Scholar
  73. Liechty, J., Ramaswamy, V., & Cohen, S. H. (2001). Choice menus for mass customization: an experimental approach for analyzing customer demand with an application to a web-based information service. Journal of Marketing Research, 38(2), 183–196.CrossRefGoogle Scholar
  74. Louviere, J. J., Meyer, R. J., Bunch, D. S., Carson, R., Dellaert, B., Hanemann, M., et al. (1999). Combining sources of preference data for modeling complex decision processes. Marketing Letters, 10(3), 187–204.CrossRefGoogle Scholar
  75. Luo, L., Kannan, P. K., Besharati, B., & Azarm, S. (2005). Design of robust new products under variability: marketing meets design. Journal of Product Innovation Management, 22, 177–192.CrossRefGoogle Scholar
  76. Luo, L., Kannan, P. K., & Ratchford, B. (2008). Incorporating subjective characteristics in product design and evaluations. Journal of Marketing Research, 45(2), 182–194.Google Scholar
  77. Marshall, P., & Bradlow, E. T. (2002). A unified approach to conjoint analysis models. Journal of the American Statistical Association, 97(459), 674–682.CrossRefGoogle Scholar
  78. McBride, R., & Zufryden, F. S. (1988). An integer programming approach to the optimal product line selection problem. Marketing Science, 7(2), 126–140.Google Scholar
  79. Michalek, J. J., Feinberg, F. M., Ebbes, P., Adigüzel, F., & Papalambros, P. Y. (2007). Optimal feasible product line design for heterogeneous markets. Working paper, Department of Mechanical Engineering, Carnegie-Mellon University.Google Scholar
  80. Michalek, J. J., Feinberg, F. M., & Papalambros, P. Y. (2005). Linking marketing and engineering product design decisions via analytical target cascading. Journal of Product Innovation Management, 22, 42–62.CrossRefGoogle Scholar
  81. Netzer, O., Schrift, R., & Toubia, O. (2008). Modeling and exploiting response time in conjoint analysis. Working paper, Columbia Business School.Google Scholar
  82. Netzer, O., & Srinivasan, V. (2008). Adaptive self-explication of multi-attribute preferences. Working paper, Columbia Business School.Google Scholar
  83. Otter, T., Allenby, G. M., & van Zandt, T. (2008). An integrated model of choice and response time with applications to conjoint analysis. Journal of Marketing Research, in press.Google Scholar
  84. Park, Y. H., Ding, M., & Rao, V. R. (2008). Eliciting preference for complex products: A web-based upgrading method. Journal of Marketing Research, in press.Google Scholar
  85. Parker, B. R., & Srinivasan V. (1976). A consumer preference approach to the planning of rural primary health-care facilities. Operations Research, 24(5), 991–1025.Google Scholar
  86. Prelec, D. (1998). The probability weighting function. Econometrica, 66(3), 497–527.CrossRefGoogle Scholar
  87. Prelec, D. (2001). A two-person scoring rule for subjective reports. Working Paper, Center for Innovation in Product Development, Cambridge, MA, Massachusetts Institute of Technology.Google Scholar
  88. Rao, V. R., & Steckel, J. H. (1991). A polarization model for describing group preferences. Journal of Consumer Research, 18(1), 108–118.CrossRefGoogle Scholar
  89. Rossi, P. E., & Allenby, G. M. (2003). Bayesian statistics and marketing. Marketing Science, 22(3), 304–328.CrossRefGoogle Scholar
  90. Saigal, C., Dahan, E., & Cumberland, W. (2007). Measuring prostate cancer treatnment preferences with standard gambles, time tradeoffs and conjoint analysis. NIH Research Proposal.Google Scholar
  91. Sandor, Z., & Wedel, M. (2001). Designing conjoint choice experiments using managers prior beliefs. Journal of Marketing Research, 38, 430–444.CrossRefGoogle Scholar
  92. Sandor, Z., & Wedel, M. (2005). Heterogeneous conjoint choice designs. Journal of Marketing Research, 42, 210–218.CrossRefGoogle Scholar
  93. Sonnier, G., Ainslie, A., & Otter, T. (2007). Heterogeneity distributions of willingness-to-pay in choice models. Quantitative Marketing and Economics, 5(3), 313–331.Google Scholar
  94. Srebro, N., Rennie, J. D. M., & Jaakkola, T. (2005). Maximum margin matrix factorization. Advances In Neural Information Processing Systems, 17.Google Scholar
  95. Srinivasan, V. (1988). A conjunctive-compensatory approach to the self-explication of multiattributed preferences. Decision Sciences, 19, 295–305 (Spring).CrossRefGoogle Scholar
  96. Srinivasan, V., Lovejoy, W. S., & Beach, D. (1997). Integrated product design for marketability and manufacturing. Journal of Marketing Research, 34(1), 154–163.CrossRefGoogle Scholar
  97. Srinivasan, V., & Shocker, A. D. (1973a). Linear programming techniques for multidimensional analysis of preferences. Psychometrika, 38(3), 337–369.CrossRefGoogle Scholar
  98. Srinivasan, V., & Shocker, A. D. (1973b). Estimating the weights for multiple attributes in a composite criterion using pairwise judgments. Psychometrika, 38(4), 473–493.CrossRefGoogle Scholar
  99. Su, M., & Rao, V. R. (2007). Evolution in willingness to pay at attribute level and its impact on new product adoption: a continuous conjoint analysis. Working paper, Cornell university.Google Scholar
  100. Tanaka, T., Camerer, C. F., & Nguyen, Q. (2007). Risk and time preferences: experimental and household survey data from Vietnam. Working paper, California Institute of Technology.Google Scholar
  101. Ter Hofstede, F., Kim, Y., & Wedel, M. (2002). Bayesian prediction in hybrid conjoint analysis. Journal of Marketing Research, 34(2), 253–261.CrossRefGoogle Scholar
  102. Toubia, O., & Hauser, J. R. (2007). On managerially efficient experimental designs. Marketing Science, 26(6), 851–858.CrossRefGoogle Scholar
  103. Toubia, O., Evgeniou, T., & Hauser, J. R. (2007a). Optimization-based and machine-learning methods for conjoint analysis: estimation and question design. In A. Gustafsson, A. Herrmann, & F. Huber (Eds.), Conjoint measurement: Methods and applications(4th ed.). Berlin: Springer Verlag.Google Scholar
  104. Toubia, O., Hauser, J. R., & Garcia, R. (2007b). Probabilistic polyhedral methods for adaptive choice-based conjoint analysis: Theory and application. Marketing Science, 26(5), 596–610.CrossRefGoogle Scholar
  105. Toubia, O., Hauser, J. R., & Simester, D. (2004). Polyhedral methods for adaptive choice based conjoint analysis. Journal of Marketing Research, 41(1), 116–131.CrossRefGoogle Scholar
  106. Toubia, O., Simester, D., Hauser, J. R., & Dahan, E. (2003). Fast polyhedral conjoint estimation. Marketing Science, 22(3), 274–303.CrossRefGoogle Scholar
  107. Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5(4), 297–323.CrossRefGoogle Scholar
  108. Vadali, S., Liechty, J., & Rangaswamy, A. (2007). Generalized hierarchical Bayes estimation for polyhedral conjoint analysis. Working Paper, Pennsylvania State University.Google Scholar
  109. von Hippel, E., & Katz, R. (2002). Shifting innovation to users via toolkits. Management Science, 48(7), 821–833.CrossRefGoogle Scholar
  110. Wassenaar, H. J., Chen, W., Cheng, J., & Sudjianto, A. (2005). Enhancing discrete choice demand modeling for decision-based design. ASME Journal of Mechanical Design, 127(4), 514–523.CrossRefGoogle Scholar
  111. Wind, J., Green, P. E., Shifflet, D., & Scarbrough, M. (1989). Courtyard by Marriott: designing a hotel facility with consumer-based marketing models. Interfaces, 19, 25–47.Google Scholar
  112. Wittink, D. R., & Cattin, P. (1989). Commercial use of conjoint analysis: an update. Journal of Marketing, 53(3), 91–96.CrossRefGoogle Scholar
  113. Wittink, D. R., Krishnamurthi, L., & Reibstein, D. J. (1989). The effect of differences in the number of attribute levels on conjoint results. Marketing Letters, 1, 113–123.CrossRefGoogle Scholar
  114. Yee, M., Dahan, E., Hauser, J. R., & Orlin, J. (2008). Greedoid-based noncompensatory inference. Marketing Science, 26(4), 532–549.CrossRefGoogle Scholar
  115. Ying, Y., Feinberg, F. M., & Wedel, M. (2006). Leveraging missing ratings to improve online recommendation systems. Journal of Marketing Research, 43(3), 355–365.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Oded Netzer
    • 1
  • Olivier Toubia
    • 1
  • Eric T. Bradlow
    • 2
  • Ely Dahan
    • 3
  • Theodoros Evgeniou
    • 4
  • Fred M. Feinberg
    • 5
  • Eleanor M. Feit
    • 5
  • Sam K. Hui
    • 6
  • Joseph Johnson
    • 7
  • John C. Liechty
    • 8
  • James B. Orlin
    • 9
  • Vithala R. Rao
    • 10
  1. 1.Columbia Business SchoolColumbia UniversityNew YorkUSA
  2. 2.University of PennsylvaniaPhiladelphiaUSA
  3. 3.UCLA Anderson SchoolUniversity of California, Los AngelesLos AngelesUSA
  4. 4.INSEADBoulevard de ConstanceFontainebleauFrance
  5. 5.Stephen M. Ross School of BusinessUniversity of MichiganAnn ArborUSA
  6. 6.Stern School of BusinessNew York UniversityNew YorkUSA
  7. 7.School of Business AdministrationUniversity of MiamiCoral GablesUSA
  8. 8.Smeal College of BusinessThe Pennsylvania State UniversityState CollegeUSA
  9. 9.Sloan School of ManagementMassachusetts Institute of TechnologyCambridgeUSA
  10. 10.Johnson Graduate School of ManagementCornell UniversityIthacaUSA

Personalised recommendations