Advertisement

Marketing Letters

, Volume 16, Issue 3–4, pp 309–320 | Cite as

Choice in Interactive Environments

  • Joel H. Steckel
  • Russell S. Winer
  • Randolph E. Bucklin
  • Benedict G. C. Dellaert
  • Xavier Drèze
  • Gerald Häubl
  • Sandy D. Jap
  • John D. C. Little
  • Tom Meyvis
  • Alan L. Montgomery
  • Arvind Rangaswamy
Article

Abstract

In the early 21st century, firms are thinking seriously and practically about an interactive marketing paradigm—one that integrates mass scale with individual responsiveness. The focus of this paper is on how this interactive environment is changing the customer decision-making process. With the increased amount of information available, the existence of sophisticated decision aids such as intelligent agents, and more latitude in how to interact beyond the basic desktop and laptop computers (e.g., personal digital assistants, cellular phones, tablet computers), customers have more choices than ever about how, when, and how much to interact with companies and each other. In this paper, we attempt to cover a few of the major areas of research on how customers make decisions in these environments.

Keywords

consumer decision-making interactive environments 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ariely, Dan, John G. Lynch, and Manny Aparicio. (2004). “Learning by Collaborative andIndividual Based Recommendation Agents,” Journal of Consumer Psychology 14(1/2), 81–94.Google Scholar
  2. Bucklin, Randolph E., Michael Trusov, and Catarina Sismeiro. (2004). “In Search of Anti-Lock (in)?: Information Search on the Web,” Presentation given at the Choice Symposium, Estes Park: Colorado, June.Google Scholar
  3. Dabholkar, P. A. and R. P. Bagozzi. (2002). “An Attitudinal Model of Technology-Based Self-Service: Moderating Effects of Consumer Traits and Situational Factors,” Journal of Academy of Marketing Science 30(3), 184–201.Google Scholar
  4. Davis, F. D., Richard, P. Bagozzi, and Paul R. Warshaw. (1989). “User Acceptance of Computer Technology: A Comparison of Two Theoretical Models,” Management Science 35(8), 982–1003.Google Scholar
  5. Dellaert, Benedict G. C. and Stefan Stremersch. (2005). “Marketing Mass Customized Products: Striking the Balance between Utility and Complexity,” Journal of Marketing Research 42(May), 219–227.Google Scholar
  6. Dhar, Ravi. and Steven M. Nowlis. (1999). “Consumer Preference for the No-Choice Option,” Journal of Consumer Research 24(March), 215–231.Google Scholar
  7. Dreze, Xavier and Andre Bonfrer. (2004). “Optimization of Online Direct Marketing Efforts,” Presentation given at the Choice Symposium, Estes Park: Colorado, June.Google Scholar
  8. Harlam, Bari A. and Leonard M. Lodish. (1995). “Modeling Consumers' Choices of Multiple Items,” Journal of Marketing Research 32, 404–418.Google Scholar
  9. Häubl, Gerald, Benedict G. C. Dellaert, Kyle B. Murray, and Valerie Trifts. (2004). “Buyer Behavior in Personalized Shopping Environments.” In Insights from the Institute for Online Consumer Studies, Claire-Marie Karat, Jan Blom and John Karat, (eds.), Designing Personalized User Experiences in eCommerce, Amsterdam: Kluwer Academic Publishers, pp. 207–223.Google Scholar
  10. Häubl, Gerald and Kyle B. Murray. (2003). “Preference Construction and Persistence in Digital Marketplaces: The Role of Electronic Recommendation Agents,” Journal of Consumer Psychology 13(1/2), 75–91.Google Scholar
  11. Häubl, Gerald. and Valerie Trifts. (2000). “Consumer Decision Making in Online Shopping Environments: The Effects of Interactive Decision Aids,” Marketing Science 19(Winter), 4–21.Google Scholar
  12. Hauser, John R., Glen L. Urban, and Bruce Weinberg. (1993). “How Consumers Allocate their Time When Searching for Information,” Journal of Marketing Research 30(November), 452–466.Google Scholar
  13. Huffman, Cynthia and Barbara E. Kahn. (1998). “Variety for Sale: Mass Customization or Mass Confusion,” Journal of Retailing 74, 491–514.CrossRefGoogle Scholar
  14. Jacoby, Jacob, Donald E. Speller, and Carol A. Kohn. (1974). “Brand Choice Behavior as a Function of Information Load,” Journal of Marketing Research 11(February), 63–69.Google Scholar
  15. Jap, Sandy D. (2003). “An Exploratory Study of the Introduction of Online Reverse Auctions,” Journal of Marketing 67(July), 96–107.Google Scholar
  16. Jap, Sandy D. (2004). “Ethical Choices in Interactive Environments,” Presentation given at the Choice Symposium, Estes Park: Colorado, June.Google Scholar
  17. Johnson, Eric J., Steven Bellman, and Gerald L. Lohse. (2003). “Cognitive Lock-in and the Power Law of Practice,” Journal of Marketing 67(April), 62–75.Google Scholar
  18. Johnson, Eric J., Wendy Moe, Peter Fader, Steven Bellman, and Gerald Lohse. (2004). “On the Depth and Dynamics of Online Search Behavior,” Management Science 50(March), 299–308.Google Scholar
  19. Kiesler, Sara and Lee Sproull. (1992). “Group Decision Making and Communication Technology,” Organizational Behavior and Human Decision Processes 52, 96–123.CrossRefGoogle Scholar
  20. Liechty, John, Srikant Vidali, and Arvind Rangaswamy. (2004). “Interactive Preference Measurement for Consumer Decision Support,” Presentation given at the Choice Symposium, Estes Park: Colorado, June.Google Scholar
  21. Meyvis, Tom and Alan D. J. Cooke. (2004). “Learning to Improve: The Biased Processing of Mixed Price Comparisons,” working paper.Google Scholar
  22. Mitchell, T. R. and A. E. Mickel. (1999). “The Meaning of Money: AnIndividual-Difference Perspective,” Academy of Management Review 24, 568–578.Google Scholar
  23. Moe, Wendy. (2003). “Buying, Searching, or Browsing: Differentiating Between Online Shoppers Using In-Store Navagational Clickstreams,” Journal of Consumer Psychology 13(1/2), 29–40.Google Scholar
  24. Montgomery, Alan L. (2004). “The Use of Automated Agents to Aid Consumer Decisions,” Presentation given at the Choice Symposium, Estes Park: Colorado, June.Google Scholar
  25. Montgomery, Alan L., Kartik Hosanagar, Ramayya Krishnan, and Karen B. Clay. (2004). “Designing a Better Shopbot,” Management Science 50(February) 189–206.Google Scholar
  26. Montgomery, Alan L. and Kannan Srinivasan. (2003). “Learning About Customers Without Asking.” In Nirmal Pal and Arvind Rangawamy (eds.), The Power of One–-Leverage Value from Personalizaton Technologies, eBRC Press, Penn State University.Google Scholar
  27. Murray, Kyle and Gerald Häubl. (2003). “A Human Capital Perspective of Skill Acquisition and Interface Loyalty,” Communications of the Association for Computing Machinery 46, 272–278.Google Scholar
  28. Murthi, B. P. S. and Sumit Sarkar. (2003). “The Role of the Management Sciences in Research on Personalization,” Management Science 49(October), 1344–1362.Google Scholar
  29. Newman, Joseph W. and Richard Staelin. (1972). “Prepurchase Information Seeking for New Cars and Major Household Appliances,” Journal of Marketing Research 9(August), 249–257.Google Scholar
  30. Ratchford, Brian T., Debabrata Talukdar, and Myung-Soo Lee. (2004). “The Impact of the Internet on Information Search for Automobiles,” Journal of Marketing Research 40(May), 193–209.Google Scholar
  31. Riaboukhina, Oksana, Sonja Wendel, Frans Verhees, Benedict G. C. Dellaert, and Hans van Trijp. (2004). Personalised Ict-interfaces for Nutritional Health Advice: Empirical Tests of a Consumer Framework, KLICT research paper VR-182, Wageningen University and Research Center.Google Scholar
  32. Roberts, John H. and James M. Lattin. (1991). “Development and Testing a Model of Consideration Set Composition,” Journal of Marketing Research 28(November), 429–440.Google Scholar
  33. Ross, William T. and Diana Robertson. (2000). “Lying: The Impact of Decision Context,” Business Ethics Quarterly 10(2), 409–440.Google Scholar
  34. Sismeiro, Catarina and Randolph E. Bucklin. (2004). “Modeling Purchase Behavior at an E-Commerce Web Site: A Task-Completion Approach,” Journal of Marketing Research 41(August), 306–323.Google Scholar
  35. Toubia, Olivier, Duncan Simester, John Hauser, and Ely Dahan. (2003). “Fast Polyhedral Adaptive Conjoint Estimation,” Marketing Science 22(Summer), 273–303.Google Scholar
  36. Trifts, Valerie and Gerald Häubl. (2003). “Information Availability and Consumer Preference: Can Online Retailers Benefit FromProviding Access to Competitor Price Information?” Journal of Consumer Psychology 13(1/2), 149–159.Google Scholar
  37. Tversky, Amos and Itamar Simonson. (1993). “Context-dependent Preferences,” Management Science 39(October), 1179–1189.Google Scholar
  38. West, Patricia M., Dan Ariely, Steve Bellman, Eric Bradlow, Joel Huber, Eric Johnson, Barbara Kahn, John Little, andDavid Schkade. (1999). “Agents to the Rescue?” Marketing Letters 10(August), 285–300.Google Scholar
  39. Zauberman, Gal. (2003). “The Intertemporal Dynamics of Consumer Lock-In,” Journal of Consumer Research 30(December), 405–419.Google Scholar
  40. Zhu, Tingshao, Russell Greiner, and Gerald Häubl. (2003a). “Learning a Model of a Web User's Interests,” Lecture Notes in Computer Science 2702, Springer Verlag, 65–75.Google Scholar
  41. Zhu, Tingshao, Russell Greiner, and Gerald Häubl. (2003b). “An Effective Complete-Web Recommender System,” Proceedings of the 12th International World Wide Web Conference (WWW-2003).Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Joel H. Steckel
    • 1
  • Russell S. Winer
    • 1
  • Randolph E. Bucklin
    • 2
  • Benedict G. C. Dellaert
    • 3
  • Xavier Drèze
    • 4
  • Gerald Häubl
    • 5
  • Sandy D. Jap
    • 6
  • John D. C. Little
    • 7
  • Tom Meyvis
    • 1
  • Alan L. Montgomery
    • 8
  • Arvind Rangaswamy
    • 9
  1. 1.New York UniversityUSA
  2. 2.University of CaliforniaLos AngelesUSA
  3. 3.Universiteit MaastrichtMaastrichtNetherlands
  4. 4.University of PennsylvaniaPennsylvaniaUSA
  5. 5.University of AlbertaAlbertaCanada
  6. 6.Emory UniversityAtlantaUSA
  7. 7.MITUSA
  8. 8.Carnegie-Mellon UniversityPittsburgh
  9. 9.Pennsylvania State University

Personalised recommendations