Advertisement

Marine Geophysical Research

, Volume 39, Issue 4, pp 475–490 | Cite as

Deformation patterns in the southwestern part of the Mediterranean Ridge (South Matapan Trench, Western Greece)

  • Nikolaos Andronikidis
  • Eleni KokinouEmail author
  • Antonios Vafidis
  • Evangelos Kamberis
  • Emmanouil Manoutsoglou
Original Research Paper

Abstract

Seismic reflection data and bathymetry analyses, together with geological information, are combined in the present work to identify seabed structural deformation and crustal structure in the Western Mediterranean Ridge (the backstop and the South Matapan Trench). As a first step, we apply bathymetric data and state of art methods of pattern recognition to automatically detect seabed lineaments, which are possibly related to the presence of tectonic structures (faults). The resulting pattern is tied to seismic reflection data, further assisting in the construction of a stratigraphic and structural model for this part of the Mediterranean Ridge. Structural elements and stratigraphic units in the final model are estimated based on: (a) the detected lineaments on the seabed, (b) the distribution of the interval velocities and the presence of velocity inversions, (c) the continuity and the amplitudes of the seismic reflections, the seismic structure of the units and (d) well and stratigraphic data as well as the main tectonic structures from the nearest onshore areas. Seabed morphology in the study area is probably related with the past and recent tectonics movements that result from African and European plates’ convergence. Backthrusts and reverse faults, flower structures and deep normal faults are among the most important extensional/compressional structures interpreted in the study area.

Keywords

Inner Mediterranean Ridge Seafloor Deformation patterns Seismic structure Tectonics 

Notes

Acknowledgements

The authors are grateful to T.M. Alves and the three anonymous reviewers for their critical review and constructive comments. This work has been implemented in the context of Mr. Andronikidis PhD study.

Funding

The funding was provided by Technical University of Crete.

References

  1. Alves TM, Lykousis V, Sakellariou D, Alexandri M, Nomikou P (2007) Constraining the origin and evolution of confined turbidite systems: South Cretan Margin, Eastern Mediterranean Sea (34 30–36 N). Geo-Mar Lett 27:41–61Google Scholar
  2. Alves TM, Kokinou E, Zodiatis G (2014) A three-step model to assess shoreline and offshore susceptibility to oil spills: the south Aegean (Crete) as an analogue for confined marine basins. Mar Pollut Bull 86(1–2):443–457.  https://doi.org/10.1016/j.marpolbul.2014.06.034 CrossRefGoogle Scholar
  3. Alves TM, Kokinou E, Zodiatis G, Lardner R, Panagiotakis C, Radhakrishnan H (2015) Modelling of oil spills in confined maritime basins: the case for early response in the Eastern Mediterranean Sea. Environ Pollut 206:390–399.  https://doi.org/10.1016/j.envpol.2015.07.042 CrossRefGoogle Scholar
  4. Alves TM, Kokinou E, Zodiatis G, Radhakrishnan H, Panagiotakis C, Lardner R (2016) Multidisciplinary oil spill modelling to protect coastal communities and the environment of the Eastern Mediterranean Sea. Sci Rep 6:36882.  https://doi.org/10.1038/srep36882 CrossRefGoogle Scholar
  5. Aubouin J (1957) Essai de correlation stratigraphique de la Grece occidentale. Bull Soc Geol Fr 7:281–304Google Scholar
  6. Aubouin J, Dercourt J (1962) Zone Preapulliene zone Ionienne et zone du Gavrovo en Peloponnese occidentale. Bull Soc Geol Fr 4:785–794Google Scholar
  7. Aubouin J, Bonneau M, Davidson J, Leboulenger P, Matesco S, Zambetakis A (1976) Esquisse structurale de l’arc Egéen externe: des Dinarides aux Taurides. Bull Soc Geol Fr 18:327–336Google Scholar
  8. Avigad D, Baer G, Heimann A (1998) Block rotations and continental extension in the central Aegean Sea: palaeomagnetic and structural evidence from Tinos and Mykonos (Cyclades, Greece). Earth Planet Sci Lett 157:23–40Google Scholar
  9. Belderson RH, Kenyon NH, Stride AH (1978) Local submarine salt-karst formation on the Hellenic Outer Ridge, Eastern Mediterranean. Geology 6:716–720Google Scholar
  10. Benetatos C, Kiratzi A, Papazachos C, Karakaisis G (2004) Focal mechanisms of shallow and intermediate depth earthquakes along the Hellenic Trench. J Geodyn 37(2):253–296Google Scholar
  11. Biju-Duval B, Letouzey J, Montadert L (1978) Structure and evolution of the Mediterranean basins. In: Initial Reports of DSDPGoogle Scholar
  12. Bohnhoff M, Makris J, Papanikolaou D, Stavrakakis G (2001) Crustal investigation of the Hellenic subduction zone using wide aperture seismic data. Tectonophysics 343:239–262Google Scholar
  13. Byrne DE, Wang W, Davis M (1993) Mechanical role of backstops in the growth of forearcs. Tectonics 12:123–144Google Scholar
  14. Camerlenghi A, Cita MB, Della Vedova B, Fusi N, Mirabile L, Pellis G (1995) Geophysical evidence of mud diapirism on the Mediterranean Ridge Accretionary Complex. Mar Geophys Res 17:115–141Google Scholar
  15. Chaumillon E, Mascle J (1997) From foreland to forearc domains: new multichannel seismic reflection survey of the Mediterranean ridge accretionary complex (Eastern Mediterranean). Mar Geol 138:237–259Google Scholar
  16. Curray JR, Shor GG Jr, Riatt RW, Henry M (1977) Seismic refraction and reflection studies of crustal structure of the eastern Sunda and western Banda arcs. J Geophys Res 82:2479–2489Google Scholar
  17. de Voogd B, Truffert C, Chamot-Rooke N, Huchon P, Lallemant S, Le Pichon X (1992) Two-ship deep seismic soundings in the basins of the Eastern Mediterranean Sea (Pasiphae Cruise). Geophys J Int 109:536–552Google Scholar
  18. Dornsiepen UF, Manutsoglu E, Mertmann D (2001) Permian–Triassic palaeogeography of the external Hellenides. Palaeogeogr Palaeoclimatol Palaeoecol 172:327–338Google Scholar
  19. Doutsos T, Pe-Piper G, Boronkay K, Koukouvelas I (1993) Kinematics of the central Hellenides. Tectonics 12(4):936–953Google Scholar
  20. Doutsos T, Koukouvelas I, Xypolias P (2006) A new orogenic model for the External Hellenides. In: Robertson AHF, Mountrakis D, Brun J-P (eds) Tectonic evolution of the Eastern Mediterranean Regions, vol 260. Geological Society, London, pp 507–520Google Scholar
  21. Emery K, Heezen BC, Allan T (1966) Bathymetry of the eastern Mediterranean Sea. Deep Sea Res Oceanogr Abstr 13(2):173–192,  https://doi.org/10.1016/0011-7471(66)91098-9 CrossRefGoogle Scholar
  22. Fruehn J, Reston T, von Huene R, Bialas J (2002) Structure of the Mediterranean Ridge accretionary complex from seismic velocity information. Mar Geol 186:43–58Google Scholar
  23. Gautier P, Brun JP, Jolivet L (1993) Structure and kinematics of Upper Cenozoic extensional detachment on Naxos and Paros. Tectonics 12:1180–1194Google Scholar
  24. Gautier P, Brun JP, Moriceau R, Sokoutis D, Martinod J, Jolivet L (1999) Timing, kinematics and cause of Aegean extension: a scenario based on a comparison with simple analogue experiments. Tectonophysics 315:31–72Google Scholar
  25. Howell A, Palamartchouk K, Papanikolaou X, Paradissis D, Raptakis C, Copley A, England P, Jackson J (2017a) The 2008 Methoni earthquake sequence: the relationship between the earthquake cycle on the subduction interface and coastal uplift in SW Greece. Geophys J Int 208(3):1592–1610Google Scholar
  26. Howell A, Jackson J, Copley A, McKenzie D, Nissen E (2017b) Subduction and vertical coastal motions in the eastern Mediterranean. Geophys J Int 211(1):593–620Google Scholar
  27. Huchon P, Lybéris N, Angelier J, Le Pichon X, Renard V (1982) Tectonics of the hellenic trench: a synthesis of sea-beam and submersible observations. Tectonophysics 86(1–3):69–112Google Scholar
  28. Huguen C, Mascle J, Chaumillon E, Woodside JM, Benkhelil J, Kopf A, Volkonskaia Α (2001) Deformational styles of the eastern Mediterranean Ridge and surroundings from combined swath mapping and seismic reflection profiling. Tectonophysics 343:21–47Google Scholar
  29. Huguen C, Chamot-Rooke N, Loubrieu B, Mascle J (2006) Morphology of a pre-collisional, salt-bearing, accretionary complex: the Mediterranean Ridge (Eastern Mediterranean). Mar Geophys Res 27:61–75.  https://doi.org/10.1007/s11001-005-5026-5 CrossRefGoogle Scholar
  30. IGME (1989) Seismotectonic Map of Greece, 1:500000. IGME, AthensGoogle Scholar
  31. Institut de Geologie et Recherches du Sous-Sol - Institut Francais du Petrole (IGRS-IFP) (1966) Etude Geologique de l’Epire (Grece Nord-Occidentale). Technip, Paris, pp 1–306Google Scholar
  32. Jacobshagen V (1986) Geologie von Griechenland. Borntraeger, Stuttgart, pp 257–279Google Scholar
  33. Jolivet L, Goffe B, Monie P, Truffert-Luxey C, Patriat M, Bonneau M (1996) Miocene detachment on Crete and exhumation P-T-t paths of high-pressure metamorphic rocks. Tectonics 15:1129–1153Google Scholar
  34. Jolivet L, Facenna C, Goffe B, Burov E, Agard P (2003) Subduction tectonics and exhumation of high-pressure metamorphic rocks in the Mediterranean orogeny. Am J Sci 303:353–409Google Scholar
  35. Jones KA, Warner M, Le Meur D, Pascal G, Tay PL (2002) Wide-angle images of the Mediterranean Ridge backstop structure and the IMERSE Working Group. Mar Geol 186:145–166Google Scholar
  36. Jongsma D (1977) Bathymetry and shallow structure of the Pliny and Strabo Trenches, south of the Hellenic Arc. Geol Soc Am Bull 88(6):797–805.  https://doi.org/10.1130/0016-7606(1977)88 CrossRefGoogle Scholar
  37. Kamberis E (1987) Geologic and oil-geology study of the post-alpine sediments of NW Peloponnese. PhD. Thesis (in Greek), National Technical University of Athens, pp 1–143Google Scholar
  38. Kamberis E, Ioakim C, Tsapralis V (1992) Geodynamic and palaeogeographic evolution of western Peloponnesus (Greece) during the Neogene. Paleontol Evol 24–25:363–376Google Scholar
  39. Kamberis E, Marnelis F, Loukoyannakis M, Maltezou F, Hirn A, Streamers Group (1996) Structure and deformation of the external Hellenides based on seismic data from offshore western Greece. In: Wessely G, Liebl W (eds) Oil and gas in Alpidic thrust belts and basins of Central and Eastern Europe, vol 5. European Association of Petroleum Geoscientists, London, pp 207–214Google Scholar
  40. Kamberis E, Ioakim CH, Tsaila-Monopolis S, Marnelis F, Sotiropoulos S (1998) Geological and palaeogeographic evolution of western Greece during the neogene-quaternary period in the geodynamic setting of the Hellenic arc. Rom J Stratigr 78:63–74Google Scholar
  41. Kamberis E, Sotiropoulos S, Aximniotou O, Tsaila-Monopoli S, Ioakim C (2000a). Late Cenozoic deformation of Gavrovo and Ionian zones in NW Peloponnesos (western Greece). Ann Geofis 43:905–919Google Scholar
  42. Kamberis E, Ioakim C, Tsaila-Monopolis S, Marnelis F, Sotiropoulos S (2000b) Geodynamic and Palaeogeographic evolution of the Ionian area (Western Greece) during upper Cenozoic, vol 9. Geological Society of Greece, Athens, pp 109–120Google Scholar
  43. Kamberis E, Pavlopoulos A, Tsaila-Monopoli S, Sotiropoulos S, Ioakim C (2005) Deep-water sedimentation and paleogeography of foreland basins in the NW Peloponnese (Greece). Geol Carpath 56:503–515Google Scholar
  44. Kastens K, Breen NA, Cita MB (1992) Progressive deformation of an evaporite-bearing accretionary complex: Sea Marc1, sea-beam and piston core observations from the Mediterranean Ridge. Mar Geophys Res 14:249–298Google Scholar
  45. Kilias A, Sotiriadis L, Moundrakis D (1985) New evidences on the tectonic structure of western Crete. Geological and Geophysical studies, Papastamatiou, IGME (in Greek)Google Scholar
  46. Kioka A, Ashi J, Sakaguchi A, Sato T, Muraoka S, Yamaguchi A, Hamamoto H, Wange K, Tokuyama H (2015) Possible mechanism of mud volcanism at the prism-backstop contact in the western Mediterranean Ridge Accretionary Complex. Mar Geol 363:52–64Google Scholar
  47. Kiratzi A, Louvari E (2003) Focal mechanisms of shallow earthquakes in the Aegean Sea and the surrounding lands determined by waveform modeling: a new database. J Geodyn 36:251–274Google Scholar
  48. Kiratzi A, Benetatos C, Roumelioti Z (2007) Distributed earthquake focal mechanisms in the Aegean Sea. Bull Geol Soc Greece, 1125–1137Google Scholar
  49. Kokinou E (2015) Geomorphologic features of the marine environment in Eastern Mediterranean using a modern processing approach. In: Schaeben H, Tolosana Delgado R, van den Boogaart GK, van den Boogaart R (eds) Proceedings of IAMG 2015, The 17th Annual Conference of the International Association for Mathematical Geosciences, pp 436–445Google Scholar
  50. Kokinou E, Kamberis E (2009) The structure of the Kythira–Antikythira strait, offshore SW Greece (35.7°–36.6°N). In van Hinsbergen, D.J.J., Edwards MA, Govers R (eds) Geodynamics of collision and collapse at the Africa-Arabia-Eurasia subduction zone, vol 311. Geological Society, London, pp 343–360Google Scholar
  51. Kokinou E, Kamberis E, Vafidis A, Monopolis D, Ananiadis G, Zelilidis A (2005) Deep seismic reflection data from offshore Western Greece: a new crustal model for the Ionian sea. J Pet Geol 28(2):81–98Google Scholar
  52. Kokinou E, Alves TM, Kamberis E (2012) Structural decoupling on a convergent forearc setting (Southern Crete, Eastern Mediterranean). Geol Soc Am Bull 124(7/8):1352–1364.  https://doi.org/10.1130/B30492.1 CrossRefGoogle Scholar
  53. Konstantinou KI, Mouslopoulou V, Liang WT, Heidbach O, Oncken O, Suppe J (2017) Present-day crustal stress field in Greece inferred from regional-scale damped inversion of earthquake focal mechanisms. J Geophys Res: Solid Earth 121(1):506–523.  https://doi.org/10.1002/2016JB013272 CrossRefGoogle Scholar
  54. Kukowski N, Lallemand SE, Malavieille J, Gutscher MA, Reston TJ (2002) Mechanical decoupling and basal duplex formation observed in sandbox experiments with application to the Western Mediterranean Ridge accretionary complex. Mar Geol 186:29–42Google Scholar
  55. Lallemant S, Truffert C, Jolivet L, Henry P, Chamot-Rooke N, De Voogd B (1994) Spatial transition from compression to extension in the Western Mediterranean Ridge accretionary complex. Tectonophysics 234:33–52Google Scholar
  56. Landmark Graphics Corporation (1998) ProMAX 2D Seismic processing and analysis. https://www.scribd.com/doc/150836418/Promax-2D-Seismic-Processing-Analysis
  57. Le Pichon X, Angelier J (1979) The Hellenic arc and trench system: a key to the neotectonic evolution of the eastern Mediterranean area. Tectonophysics 60:1–42Google Scholar
  58. Le Pichon X, Angelier J (1981) The Aegean Sea. Philos Trans R Soc Lond A 300:357–372Google Scholar
  59. Le Pichon X, Lyberis N, Angelier J, Renard V (1982) Strain distribution over the East Mediterranean ridge: a synthesis incorporating new Sea-Beam data. Tectonophysics 86:243–274Google Scholar
  60. Le Meur D, Lallemant SJ, Chamot-Rooke N, Pascal G, Nouze H, Foucher JP (1997) The geological structure of the Mediterranean Ridge Cleft Basins and the region of the brine lakes. In: Final Report of MEDRIFF (An integrated investigation of the fuid-flow regime of the Mediterranean Ridge) to the European Commission under contract MAS2 CT92-0037: 4Google Scholar
  61. Le Pichon X, Angelier J, Aubouin J, Lyberis N, Monti S, Renard V, Got H, Hsü K, Mart Y, Mascle J, Matthews D, Mitropoulos D, Tsoflias P, Chronis G (1979) From subduction to transform motion: a seabeam survey of the Hellenic trench system. Earth Planet Sci Lett 44(3):441–450Google Scholar
  62. Le Pichon X, Lallemant SJ, Chamot-Rooke N, Lemeur D, Pascal G (2002) The Mediterranean Ridge backstop and the Hellenic nappes. Mar Geol 186:111–125Google Scholar
  63. Lewis SD, Hayes DE (1985) Forearc basin development along western Luzon, Philippines. Energy 10:281–296Google Scholar
  64. Lips ALW, White SH, Wijbrans JR (2000) Middle-Late Alpine thermotectonic evolution of the southern Rhodope Massif. Greece Geodin Acta 13:281–292Google Scholar
  65. Lyberis N, Angelier J, Barrier E, Lallement S (1982) Active deformation of a segment of arc, the strait of Kythira, Hellenic arc, Greece. J Struct Geol 4:299–311Google Scholar
  66. Makris J, Papoulia J (2014) The backstop between the Mediterranean Ridge and western Peloponnese, Greece: its crust and tectonization. An active seismic experiment with ocean bottom seismographs. Boll Geofis Teorica Appl 55(2):249–279.  https://doi.org/10.4430/bgta0125 CrossRefGoogle Scholar
  67. Mascle J, Le Quellec P (1980) Document Matapan trench (Ionian Sea): example of trench disorganization? Geology 8(2):77–81Google Scholar
  68. McClusky S, Balassanian S et al (2000) Global positioning system constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J Geophys Res 105:5695–5719Google Scholar
  69. Mercier JL, Delibassis ND, Gauthier AJ, Jarrige JJ, Lemeille F, Philip H, Sebrier M, Sorel D (1979) La neotectonique de l’arc Egeen. Rev Geol Dyn Geog Phys 21:67–92Google Scholar
  70. Meyer RP, Mooney WD, Hales AL, Helsley CE, Woolaid GP, Hussong DM, Kroenke LW, Ramirez JE (1976) Project Narino III: refraction observations across a leading edge, Malpelo Island to the Colombian Cordillera Occidental. In Sutton GH et al (eds) The Geophysics of the Pacific Ocean Basin and its margins, vol 19. American Geophysical Union, Washington, pp 105–133Google Scholar
  71. Monopolis D, Bruneton A (1982) Document Ionian sea (Western Greece): its structural outline deduced from drilling and geophysical data. Tectonophysics 83(3–4):227–242Google Scholar
  72. Neidell NS, Taner MT (1971) Semblance and other coherency measures for multi-channel data. Geophysics 36:482–497Google Scholar
  73. Panagiotakis C, Kokinou E (2014) Automatic enhancement and detection of active sea faults from bathymetry. In: Proceedings of the 22nd International Conference on Pattern Recognition (ICPR), IEEE, pp 855–860Google Scholar
  74. Panagiotakis C, Kokinou E (2015) Linear pattern detection of geological faults via a topology and shape optimization method. IEEE J Sel Top Appl Earth Obs Remote Sens 8(1):3–11Google Scholar
  75. Panagiotakis C, Kokinou E (2017) Unsupervised detection of topographic highs with arbitrary basal shapes based on volume evolution of isocontours. Comput Geosci 102:22–33.  https://doi.org/10.1016/j.cageo.2017.02.004 CrossRefGoogle Scholar
  76. Panagiotakis C, Kokinou E, Sarris A (2012) Curvilinear structure enhancement and detection in geophysical images based on a multiple filtering scheme. IEEE Trans Geosci Remote Sens 49:2040–2048Google Scholar
  77. Papanikolaou D, Danamos G (1991) The role of the geotectonic location of Kythira and Cyclades in the geodynamic evolution of the Hellenic arc. Bull Geol Soc Greece XXV:65–79Google Scholar
  78. Papazachos BC (1996) Large seismic faults in the Hellenic Arc. Analli di Geofisica 39:891–903Google Scholar
  79. Pe-Piper G (1982) Geochemistry, tectonic setting and metamorphism of mid-Triassic volcanic rocks of Greece. Tectonophysics 85:253–272Google Scholar
  80. Postma G, Fortuin AR, Van Wamel WA (1993) Basin fill patterns controlled by tectonics and climate: the Neogene ‘forearc’ basins of eastern crete as a case history. In: Frostick LE, Steel RJ (eds) Tectonic controls and signatures in sedimentary successions, vol 20. Special Publication of the International Association for Sediment, pp 335–362Google Scholar
  81. Rabaute A, Chamot-Rooke N (2007) Quantitative mapping of active mud volcanism at the western Mediterranean Ridge-backstop contact. Mar Geophys Res 28:271–295.  https://doi.org/10.1007/s11001-007-9031-8 CrossRefGoogle Scholar
  82. Reilinger R, McClusky S (2011) Nubia–Arabia–Eurasia plate motions and the dynamics of Mediterranean and Middle East tectonics. Geophys J Int 186:971–979.  https://doi.org/10.1111/j.1365-246X.2011.05133.x CrossRefGoogle Scholar
  83. Reston TJ, Fruehn J, von Huene R, IMERSE Working Group (2002) The structure and evolution of the western Mediterranean Ridge. Mar Geol 186:83–110Google Scholar
  84. Richter D, Mariolakos I, Risch H (1978) The main flysch stages of the Hellenides. In: Closs H, Roeder D, Schweizerbart SK (eds) Alps, Apennines, Hellenides, vol 38. Inter-Union Commission on Geodynamics Scientific Report, Stuttgart, pp 434–438Google Scholar
  85. Ring U, Reishmann T (2002) The weak and superfast Cretan detachment, Greece: exhumation at subduction rates in extruding wedges. J Geol Soc London 159:225–228Google Scholar
  86. Ring U, Layer PW, Reischmann T (2001) Miocene high-pressure metamorphism in the Cyclades and Crete, Aegean Sea, Greece: evidence for large magnitude displacement on the Cretan detachment. Geology 29:395–398Google Scholar
  87. Roumelioti Z, Benetatos C, Kiratzi A (2009) The 14 February 2008 earthquake (M6.7) sequence offshore south Peloponnese (Greece): source models of the three strongest events. Tectonophysics 471:272–284Google Scholar
  88. Ryan W, Kastens K, Cita M (1982) Geological evidence concerning compressional tectonics in the Eastern Mediterranean. Tectonophysics 86:213–242Google Scholar
  89. Ryan WBF, Carbotte SM, Coplan JO, O’Hara S, Melkonian A, Arko R, Weissel RA, Ferrini V, Goodwillie A, Nitsche F, Bonczkowski J, Zemsky R (2009) Global multi-resolution topography synthesis. Geochem Geophys Geosyst 10:Q03014.  https://doi.org/10.1029/2008GC002332 CrossRefGoogle Scholar
  90. Sachpazi M, Laigle M, Charalampakis M, Sakellariou D, Flueh E, Sokos E, Daskalaki E, Galvé A, Petrou P, Hirn A (2016) Slab segmentation controls the interplate slip motion in the SW Hellenic subduction: new insight from the 2008 Mw6.8 Methoni interplate earthquake. Geophys Res Lett 43(18):9619–9626.  https://doi.org/10.1002/2016GL070447 CrossRefGoogle Scholar
  91. Silver EA, Reed DL (1988) Backthrusting in accretionary wedges. J Geophys Res 93:3116–3126Google Scholar
  92. Silver EA, Reed DL, Tagudin JE, Hell DJ (1990) Implications of the North and South Panama Thrust Belts for the origin of the Panama orocline. Tectonics 9:261–281Google Scholar
  93. Sorel D, Bizon G, Aliaj S, Hasani L (1992) Stratigraphical data on the age and duration of the compressional tectonic phases in the external Hellenides (NW Greece and Albania) since the Miocene. Bull Soc Geol Fr 163(4):447–454Google Scholar
  94. Sotiropoulos S, Kamberis E, Triantaphyllou MV, Doutsos T (2003) Thrust sequences in the central part of the External Hellenides. Geol Mag 140:661–668Google Scholar
  95. Taner MT, Koehler F (1969) Velocity spectra - digital computer derivation and applications of velocity functions. Geophysics 34:859–881Google Scholar
  96. Tay PL, Lonergan L, Warner M, Jones KA, Babassilas D, Camerlenghi A, Cernbori L, Chamot-Rooke N, Dickmann T, Fruehn J, Jones K, Lallemant S, Le Meur D, Le Pichon X, Lonergan L, Loucoyannakis M, Nicolich R, Pascal G, Reston T, Von Huene R, Warner M, Westbrook G (2002) Seismic investigation of thick evaporite deposits on the central and inner unit of the Mediterranean Ridge accretionary complex. Mar Geol 186(1–2):167–194Google Scholar
  97. Taymaz T, Jackson J, Westaway R (1990) Earthquake mechanics in the Hellenic Trench near Crete. Geophys J Int 102:695–731Google Scholar
  98. Theodoropoulos KD (1973) Natural geography of Kythira Island. Lectureship Thesis, AthensGoogle Scholar
  99. Thiébault F, Triboulet C (1984) Alpine metamorphism and deformation in Phyllites Nappes (external Hellenides, Southern Peloponnesus, Greece): geodynamic Implications. J Geol 92(2):185–199Google Scholar
  100. Thomson SN, Stoeckhert B, Brix MR (1998) Thermochronology of the high-pressure metamorphic rocks of Crete, Greece: implications for the speed of tectonic processes. Geology 26:259–262Google Scholar
  101. Truffert C, Chamot-Rooke N, Lallemant S, de Voogd B, Huchon P, Le Pichon X (1993) The crust of the Western Mediterranean Ridge from deep seismic data and gravity modelling. Geophys J Int 114:360–372Google Scholar
  102. van Hinsbergen DJJ, Zachariasse WJ,. Wortel MJR, Meulenkamp JE (2005) Underthrusting and exhumation: a comparison between the External Hellenides and the ‘‘hot’’ Cycladic and ‘‘cold’’ South Aegean core complexes (Greece). Tectonics 24(2):1–19Google Scholar
  103. Vittori J, Got H, Quellec P, Mascle J, Mirabile L (1981) Emplacement of the recent sedimentary cover and processes of deposition on the Matapan Trench margin (Hellenic arc). Mar Geol 41:113–135Google Scholar
  104. Westbrook GK (1975) The structure of the crust and upper mantle in the region of Barbados Lesser Antilles. Geophys J Roy Astron Soc 43:201–242Google Scholar
  105. Westbrook GK, Ladd JW, Buhl P, Bangs N, Tiley JC (1988) Crosss section of an accretionary wedge: Barbados Ridge complex. Geology 16:631–635Google Scholar
  106. Xypolias P, Doutsos T (2000) Kinematics of rock flow in a crustal-scale shear zone: implication for the orogenic evolution of the southwestern Hellenides. Geol Mag 137:81–96Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Nikolaos Andronikidis
    • 1
  • Eleni Kokinou
    • 2
    Email author
  • Antonios Vafidis
    • 1
  • Evangelos Kamberis
    • 3
  • Emmanouil Manoutsoglou
    • 1
  1. 1.School of Mineral Resources EngineeringTechnical University of CreteChaniaGreece
  2. 2.Laboratory of Applied Geology and Hydrogeology, Department of Environmental & Natural Resources EngineeringTechnological Educational Institute CreteHeraklionGreece
  3. 3.Hellenic Petroleum (Exploration and Exploitation of Hydrocarbons Division)MarousiGreece

Personalised recommendations