Marine Geophysical Research

, Volume 37, Issue 1, pp 1–20 | Cite as

Variations in Moho and Curie depths and heat flow in Eastern and Southeastern Asia

  • Chun-Feng Li
  • Jian Wang
Original Research Paper


The Eastern and Southeastern Asian regions witness the strongest land–ocean and lithosphere–asthenosphere interactions. The extreme diversity of geological features warrants a unified study for a better understanding of their geodynamic uniqueness and/or ubiquity from a regional perspective. In this paper we have explored a large coverage of potential field data and have detected high resolution Moho and Curie depths in the aforementioned regions. The oldest continental and oceanic domains, i.e. the North China craton and the Pacific and Indian Ocean have been found thermally perturbed by events probably linked to small-scale convection or serpentinization in the mantle and to numerous volcanic seamounts and ridges. The thermal perturbation has also been observed in proximity of the fossil ridge of the western Philippine Sea Basin, which shows anomalously small Curie depths. The western Pacific marginal seas have the lowest Moho temperature, with Curie depths generally larger than Moho depths. The contrary is true in most parts of easternmost Eurasian continent. Magmatic processes feeding the Permian Emeishan large igneous province could have also been genetically linked to deep mantle/crustal processes beneath the Sichuan Basin. The regionally elongated magnetic features and small Curie depths along the Triassic Yangtze-Indochina plate boundary suggest that the igneous province could be caused by tectonic processes along plate margins, rather than by a deep mantle plume. At the same time, we interpret the Caroline Ridge, the boundary between the Pacific and the Caroline Sea, as a structure having a continental origin, rather than as hotspot or arc volcanism. The surface heat flow is primarily modulated by a deep isotherm through thermal conduction. This concordance is emphasized along many subduction trenches, where zones of large Curie depths often correspond with low heat flow. Local or regional surface heat flow variations cannot be faithfully used in inferring deep thermal structures, which can be better constrained overall through Curie depths detected from surface magnetic anomalies.


Western Pacific Curie depth Moho Heat flow Thermal perturbation 



This research is funded by National Science Foundation of China (Grant Nos. 91428309 and 91028007). We thank GETECH for providing magnetic data of the Philippines. We are also greatly indebted to anonymous reviewers for their critical and constructive comments. Data processing and mapping are supported by the USGS potential field software (Cordell et al. 1993; Phillips 1997), and by GMT (Wessel and Smith 1995).


  1. Altis S (1999) Origin and tectonic evolution of the Caroline Ridge and the Sorol Trough, western tropical Pacific, from admittance and a tectonic modeling analysis. Tectonophysics 313:271–292CrossRefGoogle Scholar
  2. Amante C, Eakins BW (2009) ETOPO1-1 arc-minute global relief model: procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24, 1-19Google Scholar
  3. Arculus R, Ishizuka O, Bogus KA (2013) Izu-Bonin-Mariana arc origins: continental crust formation at intraoceanic arc: foundations, inceptions, and early evolution. IODP Sci Prosp. doi: 10.2204/iodp.sp.351.2013 Google Scholar
  4. Becker JJ, Sandwell DT, Smith WHF, Braud J, Binder B, Depner J, Fabre D, Factor J, Ingalls S, Kim S-H, Ladner R, Marks K, Nelson S, Pharaoh A, Trimmer R, Von Rosenberg J, Wallace G, Weatherall P (2009) Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Mar Geodesy 32:355–371CrossRefGoogle Scholar
  5. Blakely RJ (1996) Potential theory in gravity and magnetic applications. Cambridge University Press, Cambridge, pp 1–464Google Scholar
  6. Bleil U, Petersen N (1983) Variations in magnetization intensity and low-temperature titanomagnetite oxidation of ocean floor basalts. Nature 301:384–388CrossRefGoogle Scholar
  7. Bullard EC (1936) Gravity measurements in East Africa. Philos Trans R Soc Lond Ser A Math Phys Sci 235(757):445–531CrossRefGoogle Scholar
  8. Chung SL, Lee TY, Lo CH, Wang PL, Chen CY, Nguyen TY, Tran TH, Wu GY (1997) Intraplate extension prior to continental extrusion along the Ailao Shan-Red River shear zone. Geology 25(4):311–314CrossRefGoogle Scholar
  9. Cordell L, Phillips JD, Godson RH (1993) USGS potential-field geophysical software for PC and compatible microcomputers. Lead Edge 12:290CrossRefGoogle Scholar
  10. Doust H (1978) Geology and exploration history of offshore central Sarawak. AAPG Search and Discovery Article #90962, AAPG 2nd Circum-Pacific energy and minerals resource conference, Honolulu, HawaiiGoogle Scholar
  11. Ferré EC, Friedman SA, Martín-Hernández F, Feinberg JM, Conder JA, Ionov DA (2013) The magnetism of mantle xenoliths and potential implications for sub-Moho magnetic sources. Geophys Res Lett 40:1–6. doi: 10.1029/2012GL054100 CrossRefGoogle Scholar
  12. Fullea J, Fernandez M, Zeyen H (2008) FA2BOUG-A FORTRAN 90 code to compute Bouguer gravity anomalies from gridded free-air anomalies: application to the Atlantic-Mediterranean transition zone. Comput Geosci 34(12):1665–1681CrossRefGoogle Scholar
  13. Geological Survey of Japan and Coordinating Committee for Coastal and Offshore Geoscience Programmes in East and Southeast Asia (CCOP) (1996) Magnetic anomaly map of East Asia 1:4,000,000 CD-ROM Version, Digital Geoscience Map 2 (P-1)Google Scholar
  14. Gómez-Ortiz D, Agarwal BNP (2005) 3DINVER.M: a MATLAB program to invert the gravity anomaly over a 3D horizontal density interface by Parker–Oldenburg’s algorithm. Comput Geosci 31(4):513–520CrossRefGoogle Scholar
  15. Hanski E, Walker RJ, Huhma H, Polyakov GV, Balykin PA, Hoa TT, Phuong NT (2004) Origin of the Permian-Triassic komatiites, northwestern Vietnam. Contrib Miner Petrol 147(4):453–469CrossRefGoogle Scholar
  16. Hasterok D (2013) Global patterns and vigor of ventilated hydrothermal circulation through young seafloor. Earth Planet Sci Lett 380:12–20CrossRefGoogle Scholar
  17. Hasterok D, Chapman DS (2007) Continental thermal isostasy I: methods and sensitivity. J Geophys Res. doi: 10.1029/2006JB004663 Google Scholar
  18. Hasterok D, Chapman DS, Davis EE (2011) Oceanic heat flow: implications for global heat loss. Earth Planet Sci Lett 311:386–395CrossRefGoogle Scholar
  19. Hoa TT, Izokh AE, Polyakov GV, Borisenko AS, Anh TT, Balykin PA, Phuong NT, Rudnev SN, Van VV, Nien BA (2008) Permo-Triassic magmatism and metallogeny of Northern Vietnam in relation to the Emeishan Plume. Russ Geol Geophys 49(7):480–491CrossRefGoogle Scholar
  20. Hu S-B, He L-J, Wang J-Y (2001) Compilation of heat flow data in the China continental area (3rd edition). Chin J Geophys 44(5):611–626CrossRefGoogle Scholar
  21. Jin QH (1989) The Geology and Oil & Gas Resource of South China Sea (in Chinese). Geological Publishing House, BeijingGoogle Scholar
  22. LaFehr TR (1991) An exact solution for the gravity curvature (Bullard B) correction. Geophysics 56(8):1179–1184CrossRefGoogle Scholar
  23. Laske G, Masters G, Ma Z, Pasyanos M (2013) Update on CRUST1.0—a 1-degree global model of earth’s crust. Geophys Res Abstracts, 15, Abstract EGU2013-2658Google Scholar
  24. Li C-F (2011) An integrated geodynamic model of the Nankai subduction zone and neighboring regions from geophysical inversion and modeling. J Geodyn 51:64–80CrossRefGoogle Scholar
  25. Li CF, Song TR (2012) Magnetic recording of the Cenozoic oceanic crustal accretion and evolution of the South China Sea basin. Chin Sci Bull 57:3165–3181CrossRefGoogle Scholar
  26. Li C-F, Chen B, Zhou Z (2009) Deep crustal structures of eastern China and adjacent seas revealed by magnetic data. Sci China (Series D) 52:984–993CrossRefGoogle Scholar
  27. Li C-F, Shi X, Zhou Z, Li J, Geng J, Chen B (2010) Depths to the magnetic layer bottom in the South China Sea area and their tectonic implications. Geophys J Int 182:1229–1247CrossRefGoogle Scholar
  28. Li C-F, Wang J, Zhou Z, Geng J, Chen B, Yang F, Wu J, Yu P, Zhang X, Zhang S (2012) 3D geophysical characterization of the Sulu-Dabie orogen and its environs. Phys Earth Planet Inter 192:35–53CrossRefGoogle Scholar
  29. Li C-F, Wang J, Lin J, Wang T (2013a) Thermal evolution of the North Atlantic lithosphere: new constraints from magnetic anomaly inversion with a fractal magnetization model. Geochem Geophys Geosyst 14:5078–5105. doi: 10.1002/2013GC004896 CrossRefGoogle Scholar
  30. Li C-F, Lin J, Kulhanek DK (2013b) Opening of the South China Sea and its implications for southeast Asian tectonics, climates, and deep mantle processes since the late Mesozoic. IODP Sci Prosp. doi: 10.2204/iodp.sp.349.2013 Google Scholar
  31. Liu W-N, Li C-F, Li J, Fairhead D, Zhou Z (2014) Deep structures of the Palawan and Sulu Sea and their implications for opening of the South China Sea. Mar Petrol Geol 58:721–735Google Scholar
  32. Maus S, Sazonova T, Hemant K, Fairhead JD, Ravat D (2007) National geophysical data center candidate for the world digital magnetic anomaly map. Geochem Geophys Geosyst 8:Q06017. doi: 10.1029/2007GC001643 Google Scholar
  33. Maus S, Barckhausen U, Berkenbosch H, Bournas N, Brozena J, Childers V, Dostaler F, Fairhead JD, Finn C, von Frese RRB, Gaina C, Golynsky S, Kucks R, Luhr H, Milligan P, Mogren S, Müller D, Olesen O, Pilkington M, Saltus R, Schreckenberger B, Thébault E, Caratori Tontini F (2009) EMAG2: a 2-arc-minute resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne and marine magnetic measurements. Geochem Geophys Geosyst 10:Q08005. doi: 10.1029/2009GC002471 CrossRefGoogle Scholar
  34. McKenzie D, Jackson J, Priestley K (2005) Thermal structure of oceanic and continental lithosphere. Earth Planet Sci Lett 233:337–349CrossRefGoogle Scholar
  35. Mooney WD, Vidale JE (2003) Thermal and chemical variations in subcrustal cratonic lithosphere: evidence from crustal isostasy. Lithos 71:185–193CrossRefGoogle Scholar
  36. Mooney WD, Laske G, Masters G (1998) CRUST 5.1: a global crustal model at 5° × 5°. J Geophys Res 103:727–747CrossRefGoogle Scholar
  37. Müller RD, Sdrolias M, Gaina C, Roest WR (2008) Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochem Geophys Geosyst 9:Q04006. doi: 10.1029/2007GC001743 CrossRefGoogle Scholar
  38. Nissen SS, Hayes DE, Yao B (1995) Gravity, heat flow, and seismic constraints on the processes of crustal extension: northern margin of the South China Sea. J Geophys Res 100:22447–22483CrossRefGoogle Scholar
  39. Nowell DAG (1999) Gravity terrain corrections—an overview. J Appl Geophys 42(2):117–134CrossRefGoogle Scholar
  40. Oldenburg DW (1974) The inversion and interpretation of gravity anomalies. Geophysics 39(4):526–536CrossRefGoogle Scholar
  41. Parker RL (1973) The rapid calculation of potential anomalies. Geophys J R Astron Soc 31(4):447–455CrossRefGoogle Scholar
  42. Parsons B, Sclater JG (1977) An analysis of the variation of ocean floor bathymetry and heat flow with age. J Geophys Res 82:803–827CrossRefGoogle Scholar
  43. Pearce JA, Reagan MK, Stern RJ, Petronotis K (2013) Izu-Bonin-Mariana fore arc: testing subduction initiation and ophiolite models by drilling the outer Izu-Bonin-Mariana fore arc. IODP Sci Prosp. doi: 10.14379/iodp.sp.352.2013 Google Scholar
  44. Phillips JD (1997) Potential-field geophysical software for the PC, version 2.2. U.S. Geological Survey, Open-File Report, 97–725Google Scholar
  45. Rao C, Li P (1991) Heat flow of Pearl River Mouth Basin. China Offshore Oil Gas (Geology) 5(6):7–18 (in Chinese) Google Scholar
  46. Ren J-S, Niu B-G, Wang J, He Z-J, Jin X-C, Xie L-Z, Zhao L, Liu R-Y, Jiang X-J, Li S, Yang F-L (2013) 1:5 million international geological map of Asia. Acta Geosci Sin 87(5):1474Google Scholar
  47. Sandwell DT, Smith WHF (2009) Global marine gravity from retracked Geosat and ERS-1 altimetry: ridge segmentation versus spreading rate. J Geophys Res 114:B01411. doi: 10.1029/2008JB006008 Google Scholar
  48. Sandwell D, Garcia E, Soofi K, Wessel P, Chandler M, Smith WHF (2013) Toward 1-mGal accuracy in global marine gravity from CryoSat-2, Envisat, and Jason-1. Lead Edge 32(8):892–899CrossRefGoogle Scholar
  49. Shi H, Li C-F (2012) Mesozoic and early Cenozoic tectonic convergence-to-rifting transition prior to opening of the South China Sea. Int Geol Rev 54:1801–1828CrossRefGoogle Scholar
  50. Shi X, Qiu X, Xia K, Zhou D (2003) Characteristics of surface heat flow in the South China Sea. J Asian Earth Sci 22:265–277CrossRefGoogle Scholar
  51. Shyu C-T, Hsu S-K, Liu C-S (1998) Heat flow off Southwest Taiwan: measurements over mud diapirs and estimated from bottom simulating reflectors. Terr Atmos Ocean Sci 9(4):795–812Google Scholar
  52. Smith WHF, Sandwell D (1997) Global seafloor topography from satellite altimetry and ship depth soundings. Science 277:1956–1962CrossRefGoogle Scholar
  53. Song T, Li C-F (2015) Rifting to drifting transition of the Southwest Subbasin of the South China Sea. Mar Geophys Res 36:167–185CrossRefGoogle Scholar
  54. Stein CA, Stein S (1992) A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature 359:123–129CrossRefGoogle Scholar
  55. Tada R, Murray RW, Alvarez Zarikian CA (2013) Asian Monsoon: onset and evolution of millennial-scale variability of Asian Monsoon and its possible relation with Himalaya and Tibetan plateau uplift. IODP Sci Prosp. doi: 10.2204/iodp.sp.346.2013 Google Scholar
  56. Tamura Y, Busby C, Blum P (2013) Izu-Bonin-Mariana Rear Arc: the missing half of the subduction factory. IODP Sci Prosp. doi: 10.2204/iodp.sp.350.2013 Google Scholar
  57. Tanaka A, Okubo Y, Matsubayashi O (1999) Curie point depth based on spectrum analysis of the magnetic anomaly data in East and Southeast Asia. Tectonophysics 306:461–470CrossRefGoogle Scholar
  58. Taylor B, Hayes DE (1983) Origin and history of the South China Sea basin. In: Hayes DE (ed) The tectonic and geologic evolution of South Eastern Asian Seas and Islands, II. American Geophysical Union, Geophysical Monograph, Washington, DC, vol 27, pp 23–56Google Scholar
  59. Turcotte DL, Schubert G (2002) Geodynamics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  60. Wang L-S, Li C, Shi Y-S, Wang Y-H (1995) Distributions of geotemperature and terrestrial heat flow density in Lower Yangtze area. Chin J Geophys (Acta Geophys Sin) 38(4):469–476Google Scholar
  61. Wang J, Hu S, Yang W, Chen B, Chen Z, Li T (2001) Geothermal measurements in the pilot boreholes of the China Continental Scientific Drilling. Chin Sci Bull 46:1–4CrossRefGoogle Scholar
  62. Wang L, Liu S, Xiao W, Li C, Li H, Guo S, Liu B, Luo Y, Cai D (2002) Distribution feature of terrestrial heat flow densities in the Bohai Basin, East China. Chin Sci Bull 47:857–862CrossRefGoogle Scholar
  63. Wang CY, Zhou M-F, Qi L (2007) Permian flood basalts and mafic intrusions in the Jinping (SW China)–Song Da (northern Vietnam) district: mantle sources, crustal contamination and sulfide segregation. Chem Geol 243:317–343CrossRefGoogle Scholar
  64. Wang P, Li Q, Li C-F (2014) Geology of the China Seas. Elsevier, Amsterdam, pp 1–687Google Scholar
  65. Wasilewski PJ, Mayhew MA (1992) The Moho as a magnetic boundary revisited. Geophys Res Lett 19:2259–2262CrossRefGoogle Scholar
  66. Wasilewski PJ, Thomas HH, Mayhew MA (1979) The Moho as a magnetic boundary. Geophys Res Lett 6:541–544CrossRefGoogle Scholar
  67. Wessel P, Smith WHF (1995) New version of the Generic Mapping Tools (GMT) version 3.0 released. Transactions of American Geophysical Union, EOS, vol 76, p 329Google Scholar
  68. Wu GY (1993) Permian basalts in Lijiang and Jinping, western Yunnan: a comparative study and its geologic significance. Acta Petrol Sin 9(supplement):63–69Google Scholar
  69. Xiao L, Xu Y-G, Mei H-J, He B (2003) Late Permian flood basalts at Jinping area and its relation to Emei mantle plume: geochemical evidences. Acta Petrol Sin 19(1):38–48Google Scholar
  70. Xiong L-P, Hu S-B, Wang JY (1993) Terrestrial heat flow values in southeastern China. Chin J Geophys 36:784–790Google Scholar
  71. Xu WL, Jiao RC, Yue JY, Wei DW (1995) Geothermal study of the continent shelf of the East China Sea. Prog Geophys 10(2):32–37 (in Chinese) Google Scholar
  72. Xu X, Shi X-B, Luo X-H, Liu F-L, Guo X-W, Sha Z-B, Yang X-Q (2006) Heat flow measurements in the Xisha Trough of the South China Sea. Mar Geol Quat Geol 26:51–58 (in Chinese) Google Scholar
  73. Yoshii T (1975) Regionality of group velocities of Rayleigh waves in the Pacific and thickening of the plate. Earth Planet Sci Lett 25(3):305–312CrossRefGoogle Scholar
  74. Zhou XM, Li WX (2000) Origin of late Mesozoic igneous rocks in southeastern China: implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics 326:269–287CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Institute of Marine Geology and Resources, Ocean CollegeZhejiang UniversityZhoushanChina
  2. 2.Key Laboratory of Crustal Dynamics, Institute of Crustal DynamicsChinese Earthquake AdministrationBeijingChina

Personalised recommendations