Marine Geophysical Research

, Volume 36, Issue 4, pp 309–333 | Cite as

Spatial variability of prodeltaic undulations on the Guadalfeo River prodelta: support to the genetic interpretation as hyperpycnal flow deposits

  • F. J. Lobo
  • J. A. Goff
  • I. Mendes
  • P. Bárcenas
  • L. M. Fernández-Salas
  • W. Martín-Rosales
  • J. Macías
  • V. Díaz del Río
Original Research Paper


Two fields of prodeltaic undulations located off the Guadalfeo River were studied by integrating surficial (multibeam bathymetry, backscatter, sediment samples) and sub-surface (seismic profiles, sediment cores) data. Our main motivation was to analyze the along- and across-shelf variability of the seafloor undulations, in order to obtain useful insights into genetic mechanisms. A geostatistical analysis was performed, based on the determination of characteristic parameters and derived relationships. The undulations occur over a concave-upward surface which shows a seaward-decreasing slope. Most of the undulations are symmetrical to asymmetrically-oriented toward the coast. Two main fields are correlated with the present and previous river mouths. The western field, associated with the modern river mouth, is highly symmetrical, with the higher undulations in an axial position and diminishing the width/height relationship both laterally and downslope. In contrast, the eastern field, associated with an historic river mouth, shows lower-amplitude undulations, the width/height changes are less pronounced, and the undulations are more elongated. The two undulation fields exhibit subseafloor reflections that are subparallel to the seafloor, with peaks that migrate upslope upward in the stratigraphic column and which appear to correlate with coarse-grained layers. We support the contention that prodeltaic undulations off the Guadalfeo River should be regarded as sediment waves. Assuming a sediment-wave process, a strong normal-to-contour sediment flows with a riverine origin (e.g., hyperpycnal flows) may have been active during undulation generation. Both morphometric parameters of the river basin and estimations of sediment concentration during exceptional flood events are in agreement with an episodic activity of high freshwater discharges. Most of the geomorphic parameters and stratigraphic observations indicate a change of sediment supply conditions related to the shift in river mouth position, attributed to a temporal change in the activity of hyperpycnal flows.


Alboran Sea Guadalfeo River prodelta Submarine undulations Multibeam bathymetry Geostatistics 



Multibeam data were collected within the framework of the ESPACE (“Estudio Geológico de la Plataforma Continental Española”) project, executed by the “Instituto Español de Oceanografía (IEO)” and the “Secretaría General de Pesca Marítima (SGPM)”. This work is a contribution to the research projects MOSAICO, TESELA, CTM2005-04960/MAR and CGL2011-30302-C02-02. This contribution was elaborated during a research stage of the first author at the Institute for Geophysics, Jackson School of Geosciences, University of Texas at Austin, during May to August 2009. This stage was funded by the “José Castillejo” program (JC2008-00210), call of the Spanish Ministry for Science and Innovation to support short stages for young doctors in foreign research centers. Isabel Mendes thanks to the Portuguese Foundation for Science and Technology (FCT) for grant SFRH/BPD/72869/2010. Useful comments and remarks concerning hyperpycnal flow development were made by James P.M. Syvitski (University of Colorado at Boulder) and Thierry Mulder (Université de Bordeaux 1). This study is a contribution to INQUA IFG "Human impact on continental shelves". Two anonymous reviewers are sincerely thanked because of their constructive suggestions that helped to improve the manuscript. UTIG Contribution #2717.


  1. Almagro J (1932) Torrentes y Pantanos en Sierra Nevada. MadridGoogle Scholar
  2. Antonov JI, Seidov D, Boyer TP, Locarnini RA, Mishonov AV, Garcia HE, Baranova OK, Zweng MM, Johnson DR (2010) World Ocean Atlas 2009, Volume 2: Salinity. In: Levitus S (ed) NOAA Atlas NESDIS 69. U.S. Government Printing Office, Washington, DCGoogle Scholar
  3. Bárcenas P, Fernández-Salas LM, Macías J, Lobo FJ, Díaz del Río V (2009) Estudio morfométrico comparativo entre las ondulaciones de los prodeltas de los ríos de Andalucía Oriental. Rev Soc Geol Esp 22(1–2):43–56Google Scholar
  4. Bárcenas P, Lobo FJ, Macías J, Fernández-Salas LM, Díaz del Río V (2011) Spatial variability of surficial sediments on the northern shelf of the Alboran Sea: the effects of hydrodynamic forcing and supply of sediment by rivers. J Iber Geol 37(2):195–214. doi: 10.5209/rev_JIGE.2011.v37.n2.8 CrossRefGoogle Scholar
  5. Bellotti P, Chiocci FL, Milli S, Tortora P, Valeri P (1994) Sequence stratigraphy and depositional setting of the Tiber delta: integration of high-resolution seismics, well logs and archeological data. J Sedim Res 64(3b):416–432. doi: 10.1306/D4267FDC-2B26-11D7-8648000102C1865D Google Scholar
  6. Berndt C, Cattaneo A, Szuman M, Trincardi F, Masson D (2006) Sedimentary structures offshore Ortona, Adriatic Sea: deformation or sediment waves? Mar Geol 234(1–4):261–270. doi: 10.1016/j.margeo.2006.09.016 CrossRefGoogle Scholar
  7. Bøe R, Bugge T, Rise L, Eidnes G, Eide A, Mauring E (2004) Erosional channel incision and the origin of large sediment waves in Trondheimsfjorden, central Norway. Geo-Mar Lett 24(4):225–240. doi: 10.1007/s00367-004-0180-3 CrossRefGoogle Scholar
  8. Brázdil R, Glaser R, Pfister C, Dobrovolný P, Antoine J-M, Barriendos M, Camuffo D, Deutsch M, Enzi S, Guidoboni E, Kotyza O, Rodrigo F (1999) Flood events of selected European Rivers in the Sixteenth Century. Clim Chang 43(1):239–285. doi: 10.1023/A:1005550401857 CrossRefGoogle Scholar
  9. Budillon F, Violante C, Conforti A, Esposito E, Insinga D, Iorio M, Porfido S (2005) Event beds in the recent prodelta stratigraphic record of the small flood-prone Bonea Stream (Amalfi Coast, Southern Italy). Mar Geol 222–223:419–441. doi: 10.1016/j.margeo.2005.06.013 CrossRefGoogle Scholar
  10. Carle L, Hill PR (2009) Subaqueous dunes of the upper slope of the fraser river delta (British Columbia, Canada). J Coast Res 25(2):448–458. doi: 10.2112/06-0796.1 CrossRefGoogle Scholar
  11. Cattaneo A, Correggiari A, Marsset T, Thomas Y, Marsset B, Trincardi F (2004) Seafloor undulation pattern on the Adriatic shelf and comparison to deep-water sediment waves. Mar Geol 213(1–4):121–148. doi: 10.1016/j.margeo.2004.10.004 CrossRefGoogle Scholar
  12. Correggiari A, Trincardi F, Langone L, Roveri M (2001) Styles of failure in late holocene highstand prodelta wedges on the adriatic shelf. J Sedim Res 71(2):218–236. doi: 10.1306/042800710218 CrossRefGoogle Scholar
  13. Díaz JI, Ercilla G (1993) Holocene depositional history of the Fluviá—Muga prodelta, northwestern Mediterranean Sea. Mar Geol 111(1–2):83–92. doi: 10.1016/0025-3227(93)90189-3 CrossRefGoogle Scholar
  14. Ercilla G, Alonso B, Baraza J (1992) Sedimentary evolution of the northwestern Alboran Sea during the quaternary. Geo-Mar Lett 12(2–3):144–149. doi: 10.1007/BF02084925 CrossRefGoogle Scholar
  15. Ercilla G, Alonso B, Baraza J (1994) Post-calabrian sequence stratigraphy of the northwestern Alboran Sea (southwestern Mediterranean). Mar Geol 120(3–4):249–265. doi: 10.1016/0025-3227(94)90061-2 CrossRefGoogle Scholar
  16. Ercilla G, Díaz JI, Alonso B, Farran M (1995) Late pleistocene-holocene sedimentary evolution of the northern Catalonia continental shelf (northwestern Mediterranean Sea). Cont Shelf Res 15(11–12):1435–1451. doi: 10.1016/0278-4343(94)00089-6 CrossRefGoogle Scholar
  17. Fernández-Salas LM, Lobo FJ, Hernández-Molina FJ, Somoza L, Rodero J, Díaz del Río V, Maldonado A (2003) High-resolution architecture of late Holocene highstand prodeltaic deposits from southern Spain: the imprint of high-frequency climatic and relative sea-level changes. Cont Shelf Res 23(11–13):1037–1054. doi: 10.1016/S0278-4343(03)00120-1 CrossRefGoogle Scholar
  18. Fernández-Salas LM, Lobo FJ, Sanz JL, Díaz-del-Río V, García MC, Moreno I (2007) Morphometric analysis and genetic implications of pro-deltaic sea-floor undulations in the northern Alboran Sea margin, western Mediterranean Basin. Mar Geol 243(1–4):31–56. doi: 10.1016/j.margeo.2007.04.013 CrossRefGoogle Scholar
  19. García-Lafuente J, Cano N, Vargas M, Rubín JP, Hernández-Guerra A (1998) Evolution of the Alboran Sea hydrographic structures during July 1993. Deep Sea Res Part I: Oceanograp Res Papers 45(1):39–65. doi: 10.1016/S0967-0637(97)00216-1 CrossRefGoogle Scholar
  20. Goff JA, Jordan TH (1988) Stochastic modeling of seafloor morphology: inversion of sea beam data for second-order statistics. J Geophys Res 93(B11):13589–13608. doi: 10.1029/JB093iB11p13589 CrossRefGoogle Scholar
  21. Goff JA, Jordan TH (1989a) Stochastic modeling of seafloor morphology: a parameterized Gaussian model. Geophys Res Lett 16(1):45–48. doi: 10.1029/GL016i001p00045 CrossRefGoogle Scholar
  22. Goff JA, Jordan TH (1989b) Stochastic modeling of seafloor morphology; resolution of topographic parameters by sea beam data. IEEE J Ocean Eng 14(4):326–337. doi: 10.1109/48.35983 CrossRefGoogle Scholar
  23. Hasiotis T, Charalampakis M, Stefatos A, Papatheodorou G, Ferentinos G (2006) Fan delta development and processes offshore a seasonal river in a seismically active region. NW Gulf of Corinth. Geo-Mar Lett 26(4):199–211. doi: 10.1007/s00367-006-0020-8 CrossRefGoogle Scholar
  24. Hernández-Molina FJ, Somoza L, Rey J, Pomar L (1994) Late pleistocene-holocene sediments on the Spanish continental shelves: model for very high resolution sequence stratigraphy. Mar Geol 120(3–4):129–174. doi: 10.1016/0025-3227(94)90057-4 CrossRefGoogle Scholar
  25. Imran J, Syvitski JPM (2000) Impact of extreme river events on the coastal ocean. Oceanogr 13(3):85–92. doi: 10.5670/oceanog.2000.17 CrossRefGoogle Scholar
  26. Jabaloy-Sánchez A, Lobo FJ, Azor A, Martín-Rosales W, Pérez-Peña JV, Bárcenas P, Macías J, Fernández-Salas LM, Vázquez-Vílchez M (2014) Six thousand years of coastline evolution in the Guadalfeo deltaic system (southern Iberian Peninsula). Geomorphol 206:374–391. doi: 10.1016/j.geomorph.2013.08.037 CrossRefGoogle Scholar
  27. Jiménez-Sánchez J, Martín-Rosales W, Fernández-Chacón F, Rubio-Campos JC (2008) Variabilidad temporal de las precipitaciones en la Cuenca del río Guadalfeo (provincia de Granada). Agua y Cultura, Publicaciones del Instituto Geológico y Minero de España, Madrid, vol 2, pp 159–168Google Scholar
  28. Lee SH, Chough SK (2001) High-resolution (2–7 kHz) acoustic and geometric characters of submarine creep deposits in the South Korea Plateau East Sea. Sedimentol 48(3):629–644. doi: 10.1046/j.1365-3091.2001.00383.x CrossRefGoogle Scholar
  29. Lee HJ, Syvitski JPM, Parker G, Orange D, Locat J, Hutton EWH, Imran J (2002) Distinguishing sediment waves from slope failure deposits: field examples, including the ‘Humboldt slide’, and modelling results. Mar Geol 192(1–3):79–104. doi: 10.1016/S0025-3227(02)00550-9 CrossRefGoogle Scholar
  30. Levchenko OV, Roslyakov AG (2010) Cyclic sediment waves on western slope of the Caspian Sea as possible indicators of main transgressive/regressive events. Quat Int 225(2):210–220. doi: 10.1016/j.quaint.2009.12.001 CrossRefGoogle Scholar
  31. Liquete C, Arnau P, Canals M, Colas S (2005) Mediterranean river systems of Andalusia, southern Spain, and associated deltas: a source to sink approach. Mar Geol 222–223:471–495. doi: 10.1016/j.margeo.2005.06.033 CrossRefGoogle Scholar
  32. Lobo FJ, Fernández-Salas LM, Moreno I, Sanz JL, Maldonado A (2006) The sea-floor morphology of a Mediterranean shelf fed by small rivers, northern Alboran Sea margin. Cont Shelf Res 26(20):2607–2628. doi: 10.1016/j.csr.2006.08.006 CrossRefGoogle Scholar
  33. Lobo FJ, Maldonado A, Hernández-Molina FJ, Fernández-Salas LM, Ercilla G, Alonso B (2008) Growth patterns of a proximal terrigenous margin offshore the Guadalfeo River, northern Alboran Sea (SW Mediterranean Sea): glacio-eustatic control and disturbing tectonic factors. Mar Geophys Res 29(3):195–216. doi: 10.1007/s11001-008-9058-5 CrossRefGoogle Scholar
  34. Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE, Baranova OK, Zweng MM, Johnson DR (2010) World Ocean Atlas 2009, Volume 1: Temperature. In: Levitus S (ed) NOAA Atlas NESDIS 69. U.S. Government Printing Office, Washington, DCGoogle Scholar
  35. Lykousis V (1991) Submarine slope instabilities in the Hellenic arc region, northeastern Mediterranean Sea. Mar Geotechnol 10(1–2):83–96. doi: 10.1080/10641199109379884 CrossRefGoogle Scholar
  36. Lykousis V, Sakellariou D, Roussakis G (2003) Prodelta slope stability and associated coastal hazards in tectonically active margins: Gulf of Corinth (NE Mediterranean). In: Locat J, Mienert J (eds) Submarine mass movements and their consequences. Kluwer Academic Publishers, pp 433–440Google Scholar
  37. Lykousis V, Roussakis G, Sakellariou D (2009) Slope failures and stability analysis of shallow water prodeltas in the active margins of Western Greece, northeastern Mediterranean Sea. Int J Earth Sci 98(4):807–822. doi: 10.1007/s00531-008-0329-9 CrossRefGoogle Scholar
  38. Macías D, Bruno M, Echevarría F, Vázquez A, García CM (2008) Meteorologically-induced mesoscale variability of the North-western Alboran Sea (southern Spain) and related biological patterns. Estuar Coast Shelf Sci 78(2):250–266. doi: 10.1016/j.ecss.2007.12.008 CrossRefGoogle Scholar
  39. Marsset T, Marsset B, Thomas Y, Cattaneo A, Thereau E, Trincardi F, Cochonat P (2004) Analysis of Holocene sedimentary features on the Adriatic shelf from 3D very high resolution seismic data (Triad survey). Mar Geol 213(1–4):73–89. doi: 10.1016/j.margeo.2004.10.002 CrossRefGoogle Scholar
  40. Matthai HF (1990) Floods. In: Wolman MG, Rigss HC (eds) The Geology of North America: Vol. O-1, Surface water hydrology. Boulder, Colorado, Geological Society of America, pp 97–120Google Scholar
  41. Milia A, Molisso F, Raspini A, Sacchi M, Torrente MM (2008) Syneruptive features and sedimentary processes associated with pyroclastic currents entering the sea: the AD 79 eruption of Vesuvius, Bay of Naples. Italy. J Geol Soc 165(4):839–848. doi: 10.1144/0016-76492007-110 CrossRefGoogle Scholar
  42. Milliman JD, Syvitski JPM (1992) Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. J Geol 100(5):525–544. doi: 10.1086/629606 CrossRefGoogle Scholar
  43. Mulder T, Syvitski JPM (1995) Turbidity currents generated at river mouths during exceptional discharges to the world oceans. J Geol 103(3):285–299. doi: 10.1086/629747 CrossRefGoogle Scholar
  44. Mulder T, Syvitski JPM, Migeon S, Faugères J-C, Savoye B (2003) Marine hyperpycnal flows: initiation, behavior and related deposits. A review. Mar Petrol Geol 20(6–8):861–882. doi: 10.1016/j.marpetgeo.2003.01.003 CrossRefGoogle Scholar
  45. Muñoz A, Ballesteros M, Montoya I, Rivera J, Acosta J, Uchupi E (2008) Alborán basin, southern Spain-Part I: geomorphology. Mar Petrol Geol 25(1):59–73. doi: 10.1016/j.marpetgeo.2007.05.003 CrossRefGoogle Scholar
  46. Normark WR, Piper DJW (1991) Initiation processes and flow evolution of turbidity currents: implications for the depositional record. In: Osborne RH (ed) From Shoreline to abyss: contributions to marine geology in honor of Francis Parker Shepard. SEPM Special Publication, vol 46. SEPM (Society for Sedimentary Geology), pp 207–230. doi:  10.2110/pec.91.09.0207
  47. Parsons JD, Bush JWM, Syvitski JPM (2001) Hyperpycnal plume formation from riverine outflows with small sediment concentrations. Sedimentol 48(2):465–478. doi: 10.1046/j.1365-3091.2001.00384.x CrossRefGoogle Scholar
  48. Perkins H, Kinder T, Violette PL (1990) The Atlantic inflow in the Western Alboran Sea. J Phys Ocean 20(2):242–263. doi: 10.1175/1520-0485(1990)020 CrossRefGoogle Scholar
  49. Ponce JJ, Carmona N (2011) Coarse-grained sediment waves in hyperpycnal clinoform systems, Miocene of the Austral foreland basin, Argentina. Geology 39(8):763–766. doi: 10.1130/g31939.1 CrossRefGoogle Scholar
  50. Puig P, Ogston AS, Guillén J, Fain AMV, Palanques A (2007) Sediment transport processes from the topset to the foreset of a crenulated clinoform (Adriatic Sea). Cont Shelf Res 27(3–4):452–474. doi: 10.1016/j.csr.2006.11.005 CrossRefGoogle Scholar
  51. Rebesco M, Neagu RC, Cuppari A, Muto F, Accettella D, Dominici R, Cova A, Romano C, Caburlotto A (2009) Morphobathymetric analysis and evidence of submarine mass movements in the western Gulf of Taranto (Calabria margin, Ionian Sea). Int J Earth Sci 98(4):791–805. doi: 10.1007/s00531-009-0429-1 CrossRefGoogle Scholar
  52. Rodrigo FS, Esteban-Parra MJ, Pozo-Vázquez D, Castro-Díez Y (1999) A 500-year precipitation record in Southern Spain. Int J Climatol 19(11):1233–1253. doi: 10.1002/(sici)1097-0088(199909)19:11<1233:aid-joc413>;2-l CrossRefGoogle Scholar
  53. Rodrigo FS, Esteban-Parra MJ, Pozo-Vázquez D, Castro-Díez Y (2000) Rainfall variability in southern Spain on decadal to centennial time scales. Int J Climatol 20(7):721–732. doi: 10.1002/1097-0088(20000615)20:7<721:aid-joc520>;2-q CrossRefGoogle Scholar
  54. Rodríguez Berzosa P, De la Peña JM (1994) Evolución del delta del río Guadalfeo. Ing Civ 94:75–84Google Scholar
  55. Sacchi M, Insinga D, Milia A, Molisso F, Raspini A, Torrente MM, Conforti A (2005) Stratigraphic signature of the Vesuvius 79 AD event off the Sarno prodelta system, Naples Bay. Mar Geol 222–223:443–469. doi: 10.1016/j.margeo.2005.06.014 CrossRefGoogle Scholar
  56. Sacchi M, Molisso F, Violante C, Esposito E, Insinga D, Lubritto C, Porfido S, Toth T (2009) Insights into flood-dominated fan-deltas: very high-resolution seismic examples off the Amalfi cliffed coasts, eastern Tyrrhenian Sea. In: Violante C (ed) Geohazard in Rocky Coastal Areas. Geological Society, London, Special Publications, vol 322. Geological Society, London, pp 33–71. doi:  10.1144/sp322.2
  57. Sultan N, Cattaneo A, Urgeles R, Lee H, Locat J, Trincardi F, Berné S, Canals M, Lafuerza S (2008) A geomechanical approach for the genesis of sediment undulations on the Adriatic shelf. Geochem Geophys Geosyst 9:Q04R03. doi: 10.1029/2007GC001822 CrossRefGoogle Scholar
  58. Syvitski JP, Morehead MD, Bahr DB, Mulder T (2000) Estimating fluvial sediment transport: the rating parameters. Water Resour Res 36(9):2747–2760. doi: 10.1029/2000wr900133 CrossRefGoogle Scholar
  59. Trincardi F, Normark W (1988) Sediment waves on the Tiber prodelta slope: interaction of deltaic sedimentation and currents along the shelf. Geo-Mar Lett 8(3):149–157. doi: 10.1007/bf02326091 CrossRefGoogle Scholar
  60. Urgeles R, De Mol B, Liquete C, Canals M, De Batist M, Hughes-Clarke JE, Amblàs D, Arnau PA, Calafat AM, Casamor JL, Centella V, De Rycker K, Fabrés J, Frigola J, Lafuerza S, Lastras G, Sànchez A, Zuñiga D, Versteeg W, Willmott V (2007) Sediment undulations on the Llobregat prodelta: signs of early slope instability or sedimentary bedforms? J Geophys Res: Solid Earth 112(B5):B05102. doi: 10.1029/2005JB003929 Google Scholar
  61. Urgeles R, Cattaneo A, Puig P, Liquete C, De Mol B, Amblàs D, Sultan N, Trincardi F (2011) A review of undulated sediment features on Mediterranean prodeltas: distinguishing sediment transport structures from sediment deformation. Mar Geophys Res 32(1):49–69. doi: 10.1007/s11001-011-9125-1 CrossRefGoogle Scholar
  62. Warrick JA, Milliman JD (2003) Hyperpycnal sediment discharge from semiarid southern California rivers: implications for coastal sediment budgets. Geol 31(9):781–784. doi: 10.1130/g19671.1 CrossRefGoogle Scholar
  63. Wessel P, Smith WHF (1991) Free software helps map and display data. EOS Trans 72:441CrossRefGoogle Scholar
  64. Wynn RB, Stow DAV (2002) Classification and characterisation of deep-water sediment waves. Mar Geol 192(1–3):7–22. doi: 10.1016/S0025-3227(02)00547-9 CrossRefGoogle Scholar
  65. Xu JP, Wong FL, Kvitek R, Smith DP, Paull CK (2008) Sandwave migration in Monterey submarine canyon Central California. Mar Geol 248(3–4):193–212. doi: 10.1016/j.margeo.2007.11.005 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • F. J. Lobo
    • 1
  • J. A. Goff
    • 2
  • I. Mendes
    • 3
  • P. Bárcenas
    • 4
  • L. M. Fernández-Salas
    • 5
  • W. Martín-Rosales
    • 6
  • J. Macías
    • 4
  • V. Díaz del Río
    • 7
  1. 1.Instituto Andaluz de Ciencias de la TierraCSIC-Universidad de GranadaArmillaSpain
  2. 2.Institute for Geophysics, Jackson School of GeosciencesUniversity of Texas at AustinAustinUSA
  3. 3.CIMAUniversidade do AlgarveFaroPortugal
  4. 4.Departamento de Análisis Matemático, Facultad de CienciasUniversidad de MálagaMálagaSpain
  5. 5.Instituto Español de Oceanografía-Centro Oceanográfico de CádizCádizSpain
  6. 6.Departamento de Geodinámica, Facultad de CienciasUniversidad de GranadaGranadaSpain
  7. 7.Instituto Español de Oceanografía-Centro Oceanográfico de MálagaFuengirolaSpain

Personalised recommendations