Marine Geophysical Research

, Volume 35, Issue 1, pp 1–20 | Cite as

Evaluating Cenozoic equatorial sediment deposition anomalies for potential paleoceanographic and Pacific plate motion applications

  • Neil C. Mitchell
  • Nathalie Dubois
Original Research Paper


If equatorial sediments form characteristic deposits around the equator, they may help to resolve the amount of northwards drift of the Pacific tectonic plate. Relevant to this issue, it has been shown that 230Th has been accumulating on the equatorial seabed faster than its production from radioactive decay in the overlying water column during the Holocene (Marcantonio et al. in Paleoceanography 16:260–267, 2001). Some researchers have argued that this reflects the deposition of particles with adsorbed 230Th carried by bottom currents towards the equator (“focusing”). If correct, this effect may combine with high pelagic productivity, which is also centered on the equator, to yield a characteristic signature of high accumulation rates marking the paleoequator in older deposits. Here we evaluate potential evidence that such an equatorial feature existed in the geological past. Seismic reflection data from seven meridional transects suggest that a band of equatorially enhanced accumulation of restricted latitude was variably developed, both spatially and temporally. It is absent in the interval 14.25–20.1 Ma but is well developed for the interval 8.55–14.25 Ma. We also examined eolian dust accumulation rate histories generated from scientific drilling data. A dust accumulation rate anomaly near the modern equator, which is not obviously related to the inter-tropical convergence zone, is interpreted as caused by focusing. Accumulation rates of Ba and P2O5 (proxies of export production) reveal a static equatorial signature, which suggests that the movement of the Pacific plate over the period 10–25 Ma was modest. The general transition from missing to well-developed focusing signatures around 14.25 Ma in the seismic data coincides with the mid-Miocene development of the western boundary current off New Zealand. This current supplies the Pacific with deep water from Antarctica, and could therefore imply a potential paleoceanographic or paleoclimatic origin. At 10.05–14.25 Ma, the latitudes of the seismic anomalies are up to ~2° different from the paleoequator predicted by Pacific plate-hotspot models, suggesting potentially a small change in the hotspot latitudes relative to the present day (although this inference depends on the precise form of the deposition around the equator). The Ba and P2O5 anomalies, on the other hand, are broadly compatible with plate models predicting slow northward plate movement over 10–25 Ma.


Equatorial sediment focusing Bottom Ekman layer Coriolis effect True polar wander Pacific plate model 



We thank the captain and crew of the RV Revelle for their work during the AMAT03 cruise, including chief scientist Mitch Lyle and the other shipboard scientists. Figures were created with the GMT software system (Wessel and Smith 1991). We thank reviews from three anonymous reviewers, which provoked significant improvements of this article. This research was supported by NERC Grants NE/C508985/2, NE/I017895/1 and NE/J005282/1, and by the University of Manchester. Data acquisition was also supported by NSF Grant OCE-9634141 to Lyle.


  1. Anderson RF, Fleisher MQ, Lao Y (2006) Glacial-interglacial variability in the delivery of dust to the central equatorial Pacific Ocean. Earth Planet Sci Lett 242:406–414CrossRefGoogle Scholar
  2. Apel JR (1987) Principles of ocean physics. Academic Press, New York, p 634Google Scholar
  3. Beaman M, Sager WW, Acton GD, Lanci L, Pares J (2007) Improved Late Cretaceous and early Cenozoic paleomagnetic apparent polar wander path for the Pacific plate. Earth Planet Sci Lett 262:1–20CrossRefGoogle Scholar
  4. Berger WH (1973) Cenozoic sedimentation in the eastern tropical Pacific. Bull Geol Soc Am 84:1941–1954CrossRefGoogle Scholar
  5. Bloomer SF, Mayer LA (1997) Core-log-seismic integration as a framework for determining the basin-wide significance of regional reflectors in the eastern equatorial Pacific. Geophys Res Lett 24:321–324CrossRefGoogle Scholar
  6. Bloomer SF, Mayer LA, Moore TC (1995) Seismic stratigraphy of the eastern equatorial Pacific Ocean: paleoceanographic implications. In: Pisias NG, Mayer LA, Janecek TR, Palmer-Julson A, van Andel TH (eds) Proceedings of the ocean drilling program, scientific results, vol 138. Ocean Drilling Program, College Station, TX, pp 537–553Google Scholar
  7. Broecker W (2008) Excess sediment 230Th: transport along the sea floor or enhanced water column scavenging? Global Biogeochem Cycles 22:Paper GB1006. doi: 10.1029/2007GB003057
  8. Doubrovine PV, Tarduno JA (2004) Late Cretaceous paleolatitude of the Hawaiian Hot Spot: New paleomagnetic data from Detroit Seamount (ODP Site 883). Geochem Geophys Geosyst 5. doi: 10.1029/2004GC000745
  9. Dubois N, Mitchell NC (2012) Large-scale sediment redistribution on the equatorial Pacific seafloor. Deep Sea Res I 69:51–61CrossRefGoogle Scholar
  10. Dymond J, Lyle M (1994) Particle fluxes in the ocean and implications for sources and preservation of ocean sediments. In: Hay WW, Andrews JT, Baker VR, Dymond J, Kump LR, Lerman A, Martin WR, Meybeck M, Milliman JD, Rea DK, Sayles FL (eds) National Research Council: material fluxes on the surface of the Earth. National Academy Press, Washington, DC, pp 125–143Google Scholar
  11. Expedition 320/321 Scientists (2010) Methods. In: Pälike H, Lyle M, Nishi H, Raffi I, Gamage K, Klaus A, Scientists tE (eds) Proceedings of the IODP, 320/321. Integrated Ocean Drilling Program Management International, Inc., TokyoGoogle Scholar
  12. Farrell JW, Raffi I, Janecek TR, Murray DW, Levitan M, Dadey K, Emeis K-C, Lyle M, Flores J-A, Hovan S (1995) Late Neogene sedimentation patterns in the eastern equatorial Pacific Ocean. In: Pisias NG, Mayer LA, Janecek TR, Palmer-Julson A, van Andel TH (eds) Proceedings of the ocean drilling program, scientific results, vol 138. Ocean Drilling Program, College Station, TX, pp 717–756Google Scholar
  13. Faul KL, Paytan A (2005) Phosphorus and barine concentrations and geochemistry in Site 1221 Paleocene/Eocene boundary sediments. In: Wilson PA, Lyle M, Firth JV (eds) Proceedings of the ocean drilling program, scientific results, vol 199. Ocean Drilling Program, College Station, TXGoogle Scholar
  14. Filippelli GM, Delaney ML (1996) Phosphorus geochemistry of equatorial Pacific sediments. Geochim Cosmochim Acta 60:1479–1495Google Scholar
  15. Francois R, Frank M, Rutgers van der Loeff MM, Bacon MP (2004) 230Th normalization: an essential tool for interpreting sedimentary fluxes during the late Quaternary. Paleoceanography 19. doi: 10.1029/2003PA000939
  16. Francois R, Frank M, Rutgers van der Loeff M, Bacon MP, Geibert W, Kienast S, Anderson RF, Bradtmiller L, Chase Z, Henderson G, Marcantonio F, Allen SE (2007) Comment on ‘‘Do geochemical estimates of sediment focusing pass the sediment test in the equatorial Pacific?’’ by M. Lyle et al. Paleoceanography 22:Paper PA1216. doi: 10.1029/2005PA001235
  17. Hall IR, McCave IN, Zahn R, Carter L, Knutz PC, Weedon GP (2003) Paleocurrent reconstruction of the deep Pacific inflow during the middle Miocene: reflections of East Antarctic Ice Sheet growth. Paleoceanography 18:Paper 1040. doi: 10.1029/2002PA000817
  18. Herron EM (1972) Sea-floor spreading and the Cenozoic history of the east-central Pacific. Geol Soc Am Bull 83:1671–1692CrossRefGoogle Scholar
  19. Honjo S, Dymond J, Collier R, Manganini SJ (1995) Export production of particles to the interior of the equatorial Pacific Ocean during the 1992 EqPac experiment. Deep-Sea Res 42:831–870CrossRefGoogle Scholar
  20. Honjo S, Manganini SJ, Krishfield RA, Francois R (2008) Particulate organic carbon fluxes to the ocean interior and factors controlling the biological pump: a synthesis of global sediment trap programs since 1983. Prog Oceanogr 76:217–285CrossRefGoogle Scholar
  21. Hovan SA (1995) Late Cenozoic atmospheric circulation intensity and climatic history recorded by eolian deposition in the Eastern Equatorial Pacific Ocean. In: Pisias NG, Mayer LA, Janecek TR, Palmer-Julson A, van Andel TH (eds) Proceedings of the ocean drilling program, scientific results. Ocean Drilling Program, College Station, TX, pp 615–625Google Scholar
  22. Huybers P, Wunsch C (2010) Paleophysical oceanography with an emphasis on transport rates. Ann Rev Mar Sci 2:1–34CrossRefGoogle Scholar
  23. Johnson DA (1972) Ocean-floor erosion in the equatorial Pacific. Geol Soc Am Bull 83:3121–3144CrossRefGoogle Scholar
  24. Kienast SS, Kienast M, Mix AC, Calvert SE, Francois R (2007) Thorium-230 normalized particle flux and sediment focusing in the Panama Basin region during the last 30,000 years. Paleoceanography 22:Paper PA2213. doi: 10.1029/2006PA001357
  25. Knappenberger MB (2000) Sedimentation rates and Pacific plate motion calculated using seismic cross sections of the Neogene equatorial sediment bulge. MSc thesis, Boise State University, Boise, p 95Google Scholar
  26. Koppers AAP, Phipps Morgan J, Morgan JW, Staudigel H (2001) Testing the fixed hotspot hypothesis using 40Ar/39Ar age progressions along seamount trails. Earth Planet Sci Lett 185:237–252CrossRefGoogle Scholar
  27. Krijgsman W, Hilgen FJ, Raffi I, Sierro FJ, Wilson DS (1999) Chronology, causes and progression of the Messinian salinity crisis. Nature 400:652–655CrossRefGoogle Scholar
  28. Laguros GA, Shipley TH (1989) Quantitative estimates of resedimentation in the pelagic sequence of the equatorial Pacific. Mar Geol 89:269–277CrossRefGoogle Scholar
  29. Lyle M (2003) Neogene carbonate burial in the Pacific Ocean. Paleoceanography 18. doi: 10.1029/2002PA000777
  30. Lyle M, Mitchell NC, Pisias N, Mix A, Ignacio Martinez J, Paytan A (2005) Do geochemical estimates of sediment focusing in the equatorial Pacific pass the sediment test? Paleoceanography 20:PA1005. doi: 10.1029/2004PA001019 CrossRefGoogle Scholar
  31. Lyle M, Pisias N, Paytan A, Ignacio Martinez J, Mix A (2007) Reply to comment by R. Francois et al. on ‘‘Do geochemical estimates of sediment focusing pass the sediment test in the equatorial Pacific?’’: further explorations of 230Th normalization. Paleoceanography 22:Paper PA1217. doi: 10.1029/2006PA001373
  32. Lyle M, Pälike H, Nishi H, Raff I, Gamage K, Klaus A, Shipboard Party (2010) The Pacific Equatorial Age Transect, IODP Expeditions 320 and 321: building a 50-million-year-long environmental record of the equatorial Pacific Ocean. Sci Drill 9:4–15. doi: 10.2240/ Google Scholar
  33. Mangini A, Domink J, Müller PJ, Stoffers P (1982) Pacific deep circulation: a velocity increase at the end of the interglacial stage 5? Deep-Sea Res 29(12A):1517–1530CrossRefGoogle Scholar
  34. Mann P, Taira A (2004) Global tectonic significance of the Solomon Islands and Ontong Java Plateau convergent zone. Tectonophysics 389:137–190CrossRefGoogle Scholar
  35. Marcantonio F, Anderson RF, Higgins S, Stute M, Schlosser P, Kubik P (2001) Sediment focusing in the central equatorial Pacific Ocean. Paleoceanography 16:260–267CrossRefGoogle Scholar
  36. Mayer LA (1979) Deep-sea carbonates: acoustic, physical, and stratigraphic properties. J Sediment Petrol 49:819–836Google Scholar
  37. Mayer LA, Shipley TH, Theyer F, Wilkens RH, Winterer EL (1985) Seismic modeling and paleoceanography at deep sea drilling project site 574. In: Mayer L, Theyer F et al (eds) Initial reports DSDP. U. S. Govt. Printing Office, Washington, DC, pp 947–970Google Scholar
  38. Mayer LA, Shipley TH, Winterer EL (1986) Equatorial Pacific seismic reflectors as indicators of global oceanographic events. Science 233:761–764CrossRefGoogle Scholar
  39. Mayer LA, Pisias NG, Janecek TR et al (1992) Proceedings of the ODP, initial reports 138. Ocean Drilling Program, Texas A&M University, College Station, TXGoogle Scholar
  40. McGee D, Marcantonio F, Lynch-Stieglitz J (2007) Deglacial changes in dust flux in the eastern equatorial Pacific. Earth Planet Sci Lett 257:215–230CrossRefGoogle Scholar
  41. Mitchell NC (1993) A model for attenuation of backscatter due to sediment accumulations and its application to determine sediment thickness with GLORIA sidescan sonar. J Geophys Res 98:22477–22493CrossRefGoogle Scholar
  42. Mitchell NC (1995) Diffusion transport model for pelagic sediments on the Mid-Atlantic Ridge. J Geophys Res 100(10):19991–20009CrossRefGoogle Scholar
  43. Mitchell NC (1998a) Modeling Cenozoic sedimentation in the central equatorial Pacific and implications for true polar wander. J Geophys Res 103:17749–17766CrossRefGoogle Scholar
  44. Mitchell NC (1998b) Sediment accumulation rates from Deep Tow profiler records and DSDP Leg 70 cores over the Galapagos Spreading Centre. In: Cramp A, MacLeod CJ, Lee SV, Jones EJW (eds) Geological evolution of ocean basins: results from the ocean drilling program, Geological Society Special Publications. Geological Society, London, pp 199–209Google Scholar
  45. Mitchell NC, Huthnance JM (2013) Geomorphological and geochemical evidence (230Th anomalies) for cross-equatorial currents in the central Pacific. Deep Sea Res I 78:24–41. doi: 10.1016/j.dsr.2013.04.003 CrossRefGoogle Scholar
  46. Mitchell NC, Lyle MW (2005) Patchy deposits of Cenozoic pelagic sediments in the central Pacific. Geology 33:49–52CrossRefGoogle Scholar
  47. Mitchell NC, Lyle MW, Knappenberger MB, Liberty LM (2003) The lower Miocene to present stratigraphy of the equatorial Pacific sediment bulge and carbonate dissolution anomalies. Paleoceanography 18. doi: 10.1029/2002PA000828
  48. Moore TC, van Andel TH, Sancetta C, Pisias N (1978) Cenozoic hiatuses in pelagic sediments. Micropaleontology 24:113–138CrossRefGoogle Scholar
  49. Moore TC, Backman J, Raffi I, Nigrini C, Sanfilippo A, Palike H, Lyle M (2004) Paleogene tropical Pacific: clues to circulation, productivity, and plate motion. Paleoceanography 19:Paper PA3013. doi: 10.1029/2003PA000998
  50. Moore TC, Mayer LA, Lyle M (2012) Sediment mixing in the tropical Pacific and radiolarian stratigraphy. Geochem Geophys Geosyst 13. doi: 10.1029/2012GC004198
  51. Müller RD, Sdrolias M, Gaina C, Roest WR (2008) Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochem Geophys Geosyst 9:paper Q04006. doi: 10.1029/2007GC001743
  52. Murray RW, Knowlton C, Leiden M, Mix AC, Polsky CH (2000a) Export production and carbonate dissolution in the central equatorial Pacific Ocean over the past 1 Myr. Paleoceanography 15:570–592CrossRefGoogle Scholar
  53. Murray RW, Knowlton C, Leiden M, Mix AC, Polsky CH (2000b) Export production and terrigenous matter in the Central Equatorial Pacific Ocean during interglacial oxygen isotop Stage 11. Global Planet Change 24:59–78CrossRefGoogle Scholar
  54. Olivarez Lyle A, Lyle M (2005) Organic carbon and barium in Eocene sediments: possible controls on nutrient recycling in the Eocene equatorial Pacific ocean. In: Wilson PA, Lyle M, Firth JV (eds) Proceedings of the ocean drilling program, scientific results, vol 199. Ocean Drilling Program, College Station, TXGoogle Scholar
  55. Pälike H, Lyle MW, Ahagon N, Raffi I, Gamage K, Zarikian CA (2008) Pacific equatorial age transect (online). In: Integrated ocean drilling program science prospectus, p 96. doi: 10.2204/iodp.sp.320321.322008
  56. Pälike H, Lyle M, Nishi H, Raffi I, Gamage K, Klaus A, Expedition Scientists (2010) Proceedings of the integrated ocean drilling program, Integrated Ocean Drilling Program, College Station, TX. doi: 10.2204/iodp.proc.320321.320101.322010
  57. Pälike H, Lyle MW, Nishi H, Raffi I, Ridgwell A, Gamage K, Klaus A, Acton G, Anderson L, Backman J, Baldauf J, Beltran C, Bohaty SM, Bown P, Busch W, Channell JET, Chun COJ, Delaney M, Dewangan P, Jones TD, Edgar KM, Evans H, Fitch P, Foster GL, Gussone N, Hasegawa H, Hathorne EC, Hayashi H, Herrle JO, Holbourn A, Hovan S, Hyeong K, Iijima K, Ito T, Kamikuri S, Kimoto K, Kuroda J, Leon-Rodriguez L, Malinverno A, Moore TC, Murphy BH, Murphy DP, Nakamura H, Ogane K, Ohneiser C, Richter C, Robinson R, Rohling EJ, Romero O, Sawada K, Scher H, Schneider L, Sluijs A, Takata H, Tian J, Tsujimoto A, Wade BS, Westerhold T, Wilkens R, Williams T, Wilson PA, Yamamoto Y, Yamamoto S, Yamazaki T, Zeebe RE (2012) A Cenozoic record of the equatorial Pacific carbonate compensation depth. Nature 488:609–615CrossRefGoogle Scholar
  58. Parés JM, Moore TC (2005) New evidence for the Hawaiian hotspot plume motion since the Eocene. Earth Planet Sci Lett 237:951–959CrossRefGoogle Scholar
  59. Paytan A, Kastner M, Chavez FP (1996) Glacial to interglacial fluctuations in productivity in the equatorial Pacific as indicated by marine barite. Science 274:1355–1357CrossRefGoogle Scholar
  60. Pisias NG, Mayer LA, Mix AC (1995) Paleoceanography of the eastern equatorial Pacific during the Neogene: synthesis of Leg 138 drilling results. In: Pisias NG, Mayer LA, Janecek TR, Palmer-Julson A, van Andel TH (eds) Proceedings of the ocean drilling program, scientific results. Ocean Drilling Program, College Station, TX, pp 5–21Google Scholar
  61. Quintin LL, Faul KL, Lear C, Graham D, Peng C, Murray RW, Shipboard Scientific Party (2002) Geochemical analysis of bulk marine sediment by inductively coupled plasma—atomic emission spectroscopy on board the JOIDES Resolution. In: Lyle M, Wilson PA, Janececk TR (eds) Proceedings of the ocean drilling program, initial reports 199. Ocean Drilling Program, College Station, TXGoogle Scholar
  62. Sager WW (2007) Divergence between paleomagnetic and hotspot-model-predicted polar wander for the Pacific plate with implications for hotspot fixity. In: Foulger GR, Jurdy DM (eds) Plates, plumes, and planetary processes, Geological Society of America Special Paper 430. Geological Society of America, pp 335–357Google Scholar
  63. Sager WW, Pringle MS (1988) Mid-Cretaceous to early Tertiary apparent polar wander path of the Pacific plate. J Geophys Res 93:11753–11771CrossRefGoogle Scholar
  64. Schuth S, Münker C, König S, Qopoto C, Basi S, Garbe-Schönberg D, Ballhaus C (2009) Petrogenesis of lavas along the Solomon Island Arc, SW Pacific: coupling of compositional variations and subduction zone geometry. J Petrol 50:781–811CrossRefGoogle Scholar
  65. Shackleton NJ, Crowhurst S, Hagelberg T, Pisias NG, Schneider DA (1995) A new late Neogene time scale: application to leg 138 sites. In: Pisias NG, Mayer LA, Janecek TR, Palmer-Julson A, van Andel TH (eds) Proceedings of the ocean drilling program, scientific results, vol 138. Ocean Drilling Program, College Station, TX, pp 73–101Google Scholar
  66. Shipley TH, Winterer EL, Goud M, Mills SJ, Metzler CV, Paull CK, Shay JT (1985) Seabeam bathymetric and water-gun seismic reflection surveys in the equatorial Pacific. In: Mayer L, Theyer F (eds) Initial reports. DSDP, 85. U.S. Govt. Printing Office, Washington, pp 825–837Google Scholar
  67. Siddall M, Anderson RF, Winckler G, Henderson GM, Bradtmiller LI, McGee D, Franzese A, Stoker TF, Müller SA (2008) Modeling the particle flux effect on distribution of 230Th in the equatorial Pacific. Paleoceangraphy 23:Paper PA2208. doi: 10.1029/2007PA001556
  68. Singh AK, Marcantonio F, Lyle M (2011) Sediment focusing in the Panama Basin. Earth Planet Sci Lett 309:33–44CrossRefGoogle Scholar
  69. Singh AK, Marcantonio F, Lyle M (2013) Water column 230Th systematics in the eastern equatorial Pacific Ocean and implications for sediment focusing. Earth Planet Sci Lett 362:294–304Google Scholar
  70. Steinberger B (2000) Plumes in a convecting mantle: models and observations for individual hotspots. J Geophys Res 105:11127–11152CrossRefGoogle Scholar
  71. Suarez G, Molnar P (1980) Paleomagnetic data and pelagic sediment facies and the motion of the Pacific plate relative to the spin axis since the Late Cretaceous. J Geophys Res 85:5257–5280CrossRefGoogle Scholar
  72. Tarduno JA (2007) On the motion of Hawaii and other mantle plumes. Chem Geol 241:234–247CrossRefGoogle Scholar
  73. Theyer F, Vincent E, Mayer LA (1989) Sedimentation and paleoceanography of the central equatorial Pacific. In: Winterer EL, Hussong DM, Decker RW (eds) The Eastern Pacific Ocean and Hawaii. Geological Society of America, Boulder, CO, pp 347–372Google Scholar
  74. Thiede J (1981) Reworking in upper Mesozoic and Cenozoic central Pacific deep sea sediments. Nature 289:667–670CrossRefGoogle Scholar
  75. Thomas E, Turekian KK, Wei KY (2000) Productivity control of fine particle transport to equatorial Pacific sediment. Global Biogeochem Cycles 14:945–955. doi: 910.1029/1998GB001102 CrossRefGoogle Scholar
  76. Tominaga M, Lyle M, Mitchell NC (2011) Seismic interpretation of pelagic sedimentation regimes in the 18–53 Ma eastern equatorial Pacific: Basin?scale sedimentation and infilling of abyssal valleys. Geochem Geophys Geosyst 12:Paper Q03004. doi: 10.1029/2010GC003347
  77. van Andel TJ, Heath GR, Moore TC (1975) Cenozoic tectonics, sedimentation, and paleoceanography of the central equatorial Pacific. Geol Soc Am Mem 143:134Google Scholar
  78. van de Flierdt T, Frank M, Halliday AN, Hein JR, Hattendorf B, Günther D, Kubik PW (2004) Deep and bottom water export from the Southern Ocean to the Pacific over the past 30 million years. Paleoceanography 19:paper PA1020. doi: 10.1029/2003PA000923
  79. Wessel P, Kroenke LW (2007) Reconciling late Neogene Pacific absolute and relative plate motion changes. Geochem Geophys Geosyst 8. doi: 10.1029/2007GC001636
  80. Wessel P, Kroenke LW (2008) Pacific absolute plate motion since 145 Ma: an assessment of the fixed hot spot hypothesis. J Geophys Res 113:Paper B06101. doi: 10.1029/2007JB005499
  81. Wessel P, Smith WHF (1991) Free software helps map and display data. EOS Trans Am Geophys Union 72:441CrossRefGoogle Scholar
  82. Wessel P, Harada Y, Kroenke LW (2006) Toward a self-consistent, high-resolution absolute plate motion model for the Pacific. Geochem Geophys Geosyst 7. doi: 10.1029/2005GC001000
  83. Winterer EL (1973) Sedimentary facies and plate tectonics of the equatorial Pacific. Am Assoc Petrol Geol Bull 57:265–282Google Scholar
  84. Wyrtki K, Kilonsky B (1984) Mean water and ocean structure during the Hawaii-to-Tahiti Shuttle experiment. J Phys Ocean 14:242–254CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.School of Earth, Atmospheric and Environmental SciencesUniversity of ManchesterManchesterUK
  2. 2.Woods Hole Oceanographic InstitutionWoods HoleUSA

Personalised recommendations