Marine Geophysical Research

, Volume 33, Issue 2, pp 149–168 | Cite as

Fractal plate reconstructions with spreading asymmetry

  • Rex H. PilgerJr.Email author
Original Research Paper


Information theory and fractal analysis are the basis of a novel fitting criterion for simultaneous plate tectonic reconstructions of magnetic isochrons and fracture zone crossings of a range of ages, rather than a single isochron age. Accretionary boundaries are modeled as two-dimensional fractal structures including both contemporary spreading boundaries and reconstructed magnetic isochron and fracture zone crossings. Each model incorporates reconstruction parameters which describe the full accretionary history, including asymmetry. The reconstruction parameters are derived by spline interpolation in time of trial rotation pseudovectors, including variable asymmetric spreading between ridge segments. Iterative algorithms, without partial derivative constraints, converge on a nominally optimal model by minimizing the sum of two-dimensional fractal bins, over the range of bin-spacings, and produce thereby progressively refined fractal spectra. The new method can incorporate all isochron identifications from the selected plates and age range in the iterative calculation set. The solution set also provides continuous instantaneous rotation parameters, including asymmetries. An example data set illustrates the methodology and model results.

The rationale for an optimal fractal criterion is rooted in recent developments in information theory: fractal structures maximize Shannon information entropy distributed over a range of scales. The fractal measure is the sum of bins occupied by reconstructed data points for each bin spacing. The fitting criterion utilized in this work is, in turn, the grand sum of the fractal measures over all calculated bin spacings. The optimal fractal measure for the grand sum has minimal integrated “fractality” relative to non-optimal sets while maximizing entropy for the optimal parameters for each bin spacing.


Plate tectonics Plate reconstructions Seafloor spreading Asymmetric spreading Fractals Information theory Maximum entropy 

Supplementary material

11001_2012_9152_MOESM1_ESM.docx (94 kb)
Supplementary material 1 (DOCX 94 kb)


  1. Aviles CA, Scholz CH, Boatwright (1987) Fractal analysis applied to characteristic segments of the San Andreas fault. J Geophys Res 92:331–344CrossRefGoogle Scholar
  2. Ballmer MD, van Hunen J, Ito G, Tackley PJ, Bianco TA (2007) Non-hotspot volcano chains originating from small-scale sublithospheric convection. Geophys Res Lett 34:L23310. doi: 10.1029/2007GL031636 CrossRefGoogle Scholar
  3. Barnsley MF (1993) Fractals everywhere. Morgan Kaufmann, BurlingtonGoogle Scholar
  4. Bird P (2003) An updated digital model of plate boundaries. Geochem Geophys Geosyst 4, doi: 10.1029/2001GC000252. Data accessed July, 2009, at
  5. Cande SC, Kent DV (1995) Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. J Geophys Res 100:6093–6095CrossRefGoogle Scholar
  6. Cande SC, Stock JM (2004) Pacific-Antarctic-Australia motion and the formation of the Macquarie plate. Geophys J Int 157:399–414CrossRefGoogle Scholar
  7. Chopard B, Herrmann HJ, Vicsek T (1991) Structure and growth mechanism of mineral dendrites. Nature 353:409–411CrossRefGoogle Scholar
  8. DeMets C, Gordon RG, Argus DF, Stein S (1994) Effect of recent revisions to the geomagnetic reversal timescale on estimates of current plate motions. Geophys Res Lett 21:2191–2194CrossRefGoogle Scholar
  9. DeMets C, Gordon RG, Argus DF (2010) Geologically current plate motions. Geophys J Int 181:1–80. doi: 10.1111/j.1365-246X.2009.04491.x CrossRefGoogle Scholar
  10. Feder J (1988) Fractals. Plenum Press, New YorkGoogle Scholar
  11. Francheteau J (1970) Paleomagnetism and plate tectonics, Ph.D. Dissertation, University of California, San DiegoGoogle Scholar
  12. Gradstein FM, Ogg JG, Smith AG (2005) A geologic time scale-2004. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  13. Grandy WT (1992) The origins of entropy and irreversibility. Open Syst Inf Dyn 1:183–196CrossRefGoogle Scholar
  14. Grandy WT (2008) Entropy and the time evolution of macroscopic systems. Int Ser Mon Phys. Oxford University Press, New York, vol 141Google Scholar
  15. Hanna MS, Chang T (1990) On graphically representing the confidence region for an unknown rotation in three dimensions. Comput Geosci 16:163–194Google Scholar
  16. Hellinger SJ (1981) The uncertainties of finite rotations in plate tectonics. J Geophys Res 86B:9312–9318CrossRefGoogle Scholar
  17. Hey RF, Martinez Á, Höskuldsson, Benediktsdóttir Á (2010) Propagating rift model for the V-shaped ridges south of Iceland. Geochem Geophys Geosyst 11, doi: 10.1029/2009GC002865
  18. Jaynes ET (1957) Information theory and statistical mechanics. Phys Rev 106:620–630CrossRefGoogle Scholar
  19. Kanasewich ER (1974) Time sequence analysis in geophysics, 3rd edn. University of Alberta Press, AlbertaGoogle Scholar
  20. Kirkwood BH, Royer J-Y, Chang TC, Gordon RG (1999) Statistical tools for estimating and combining finite rotations and their uncertainties. Geophys J Int 137:408–428CrossRefGoogle Scholar
  21. Le Pichon X, Francheteau J, Bonnin J (1973) Plate tectonics. Elsevier, AmsterdamGoogle Scholar
  22. Livermore R, Nankivell A, Eagles G, Morris P (2005) Paleogene opening of Drake Passage. Earth Plan Sci Lett 236:459–470CrossRefGoogle Scholar
  23. Mandelbrot BB (1953) An information theory of the statistical structure of language. In: Jackson W (ed) Communication theory. Academic Press, New York, pp 503–512Google Scholar
  24. Mandelbrot BB (1967) How long is the coast of Britain? Science 156:636–638CrossRefGoogle Scholar
  25. Mandelbrot BB (1975) Stochastic models for the Earth’s relief, the shape and the fractal dimension of the coastlines, and the number-area rule for islands. Proc Natl Acad Sci USA 72:3825–3828CrossRefGoogle Scholar
  26. Mandelbrot BB (1982) The fractal geometry of nature. W. H. Freeman, New YorkGoogle Scholar
  27. McKenzie D, Sclater JG (1971) The evolution of the Indian Ocean since the Late Cretaceous. Geophys J R Astr Soc 25:437–528Google Scholar
  28. McKenzie D, Molnar P, Davies D (1970) Plate tectonics of the Red Sea and East Africa. Nature 226:243–248CrossRefGoogle Scholar
  29. Merdan Z, Bayirli M (2005) Computation of the fractal pattern in manganese dendrites. Chin Phys Lett 22:2112–2115CrossRefGoogle Scholar
  30. Minster JB, Jordan TH, Molnar P, Haines E (1974) Numerical modelling of instantaneous plate tectonics. Geophys J R Astr Soc 36:541–576Google Scholar
  31. Müller R, Sdrolias M, Gaina C, Roest, Walter R (2008) Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochem Geophys Geosyst 9, P. NIL_18-NIL_36, pp 1525–2027Google Scholar
  32. Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313Google Scholar
  33. Okubo PG, Aki K (1987) Fractal geometry in the San Andreas fault system. J Geophys Res 92:345–355CrossRefGoogle Scholar
  34. Pastor-Satorras R, Wagensberg J (1998) The maximum entropy principle and the nature of fractals. Phys A 251:291–302CrossRefGoogle Scholar
  35. Pilger RH (1978) A method for finite plate reconstructions, with applications to Pacific-Nazca Plate evolution. Geophys Res Lett 5:469–472CrossRefGoogle Scholar
  36. Pilger RH (2003) Geokinematics: prelude to geodynamics. Springer, BerlinGoogle Scholar
  37. Pitman WC III, Talwani M (1972) Sea-floor spreading in the North Atlantic. Geol Soc Am Bull 83:619–646CrossRefGoogle Scholar
  38. Powell MJD (1974) Unconstrained minimization algorithms without computation of derivatives. Bollettino della Unione Matematica Italiana 9:60–69Google Scholar
  39. Press WH, Teukolsky SA, Vetterling WA, Flannery BP (1998) Numerical recipes, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  40. Richardson LF (1922) Weather prediction by numerical process. Cambridge University Press, CambridgeGoogle Scholar
  41. Richardson LF (1951) The problem of contiguity: an appendix to Statistic of Deadly Quarrels. General systems: yearbook of the Society for the Advancement of General Systems Theory (1961) 6:139–187Google Scholar
  42. Rodriguez-Iturbe I, Rinaldo A (2001) Fractal river basins: chance and self-organization. Cambridge University Press, Cambridge 564 pGoogle Scholar
  43. Schroeder M (1991) Fractals, chaos, power laws—minutes from an infinite paradise. W. H. Freeman, New YorkGoogle Scholar
  44. Seton M, Müller RD, Zahirovic S, Gaina C, Torsvik T, Shephard G, Talsma A, Gurnis M, Turner M, Chandler M (2012) Global continental and ocean basin reconstructions since 200 Ma. Earth-Science Rev (in press)Google Scholar
  45. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423, 623–656Google Scholar
  46. Shannon CE (1951) Prediction and entropy of written English. Bell Syst Tech J 30:50–64Google Scholar
  47. Smith EGC (1981) Calculation of poles of instantaneous rotation from poles of finite rotation. Geophys J R Astron Soc 65:223–227CrossRefGoogle Scholar
  48. Sornette D, Pisarenko VF (2003) Fractal plate tectonics. Geophys Res Lett 30:1105. doi: 10.1029/2002GL015043 CrossRefGoogle Scholar
  49. Turcotte DL (1997) Fractals and chaos in geology. Cambridge University Press, CambridgeGoogle Scholar
  50. Walsh JJ, Watterson J (1993) Fractal analysis of fracture patterns using the standard box-counting technique: valid and invalid methodologies. J Struct Geol 15:1509–1512CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.ArvadaUSA

Personalised recommendations