Marine Geophysical Researches

, Volume 31, Issue 4, pp 263–283 | Cite as

Gravity modeling of the Muertos Trough and tectonic implications (north-eastern Caribbean)

  • J. L. Granja Bruña
  • A. Muñoz-Martín
  • U. S. ten Brink
  • A. Carbó-Gorosabel
  • P. Llanes Estrada
  • J. Martín-Dávila
  • D. Córdoba-Barba
  • M. Catalán Morollón
Original Research Paper


The Muertos Trough in the northeast Caribbean has been interpreted as a subduction zone from seismicity, leading to infer a possible reversal subduction polarity. However, the distribution of the seismicity is very diffuse and makes definition of the plate geometry difficult. In addition, the compressive deformational features observed in the upper crust and sandbox kinematic modeling do not necessarily suggest a subduction process. We tested the hypothesized subduction of the Caribbean plate’s interior beneath the eastern Greater Antilles island arc using gravity modeling. Gravity models simulating a subduction process yield a regional mass deficit beneath the island arc independently of the geometry and depth of the subducted slab used in the models. This mass deficit results from sinking of the less dense Caribbean slab beneath the lithospheric mantle replacing denser mantle materials and suggests that there is not a subducted Caribbean plateau beneath the island arc. The geologically more realistic gravity model which would explain the N–S shortening observed in the upper crust requires an overthrusted Caribbean slab extending at least 60 km northward from the deformation front, a progressive increase in the thrusting angle from 8° to 30° reaching a maximum depth of 22 km beneath the insular slope. This new tectonic model for the Muertos Margin, defined as a retroarc thrusting, will help to assess the seismic and tsunami hazard in the region. The use of gravity modeling has provided targets for future wide-angle seismic surveys in the Muertos Margin.


Caribbean plate Muertos Trough Gravity modeling Retroarc thrusting 



We are in debt to the Captain, officers, and crew of the R/V Hespérides and the technicians of the Unidad de Tecnología Marina and the U. S. Geological Survey for their professional help at sea. This work has been supported by the Spanish Ministry of Education and Science (leaded by Andrés Carbó-Gorosabel and Diego Córdoba-Barba; Projects REN2003-08520-C02-01, CTM2006-13666-C02-01 and complementary action REN2002-12855-E/MAR), the U.S. Geological Survey Coastal and Marine Program, and the Puerto Rico Seismic Network. J. L. Granja was funded with a doctoral grant from the Spanish Ministry of Education and Science. We also want to thank the Dirección General de Minería of Dominican Republic for providing the onshore gravity data. We also thank to the anonymous reviewers for their constructive comments and suggestions.


  1. Ali ST, Freed AM, Calais E, Manaker DM, McCann WR (2008) Coulomb stress evolution in Northeastern Caribbean over the past 250 years due to coseismic, postseismic and interseismic deformation. Geophys J Int 174:904–918CrossRefGoogle Scholar
  2. Bodine JH, Watts AB (1979) On lithospheric flexure seaward of the Bonin and Mariana trenches. Earth Planet Sci Lett 43(1):132–148CrossRefGoogle Scholar
  3. Brandon MT (1986) Comment on “Comments on the growth of accretionary wedges”. Geology 14:184–185CrossRefGoogle Scholar
  4. Bray CJ, Karig DE (1985) Porosity of sediments in accretionary prisms and some implications for dewatering processes. J Geophys Res 90(B1):768–778. doi: 10.1029/JB090iB01p00768 CrossRefGoogle Scholar
  5. Brocher TM (2005) Empirical relations between elastic wavespeeds and density in the earth’s crust. Bull Seismol Soc Am 95(6):2081–2092CrossRefGoogle Scholar
  6. Burke K, Fox PJ, Sengor MC (1978) Buoyant ocean floor and the evolution of the Caribbean. J Geophys Res 83(B8):3949–3953CrossRefGoogle Scholar
  7. Byrne DB, Suarez G, McCann WR (1985) Muertos Trough subduction, microplate tectonics in the northern Caribbean? Nature 317:420–421CrossRefGoogle Scholar
  8. Calais E, Mazabraud Y, Mercier de Lepinay B, Mann P, Mattioli G, Jansma P (2002) Strain partitioning and fault slip rates in the north-eastern Caribbean from GPS measurements. Geophys Res Lett 29:1856. doi: 10.1029/2002GL015397 CrossRefGoogle Scholar
  9. Calvert AJ, Ramachandran K, Kao H, Michael A, Fisher MA (2006) Local thickening of the Cascadia forearc crust and the origin of seismic reflectors in the uppermost mantle. Tectonophysics 420:175–188CrossRefGoogle Scholar
  10. Carbó A, Muñoz M, Llanes P, Álvarez J, ZEE working group (2003) Gravity analysis offshore the Canary Islands from a systematic survey. Mar Geophys Res 24:113–127CrossRefGoogle Scholar
  11. Carbó A, Córdoba D, Martín Dávila J, ten Brink U, Herranz P, Von Hilldebrandt C, Payero J, Muñoz Martín A, Pazos A, Catalán M, Granja JL, Gómez M, GEOPRICO-DO Working Group (2005) New marine geophysical survey explores active tectonics at north-eastern Caribbean Plate Boundary. Eos Trans Am Geophys U 86(51):537–540Google Scholar
  12. Case JE, MacDonald WD, Fox PJ (1990) Caribbean crustal provinces; seismic and gravity evidence. In: Dengo G, Case JE (eds) The geology of North America, vol. H. The Caribbean region. Geological Society of America, Boulder, Colorado, pp 15–36Google Scholar
  13. Christensen NI, Mooney WD (1995) Seismic velocity structure and composition of the continental crust: a global view. J Geophys Res 100:9761–9788CrossRefGoogle Scholar
  14. Córdoba D, Carbó-Gorosabel A, Martín Dávila J, Pazos A, ten Brink U, Granja Bruña JL, Cotilla M, Muñoz-Martín A, Llanes Estrada P, Payero J, Pujol R, Calzadilla M, von Hillebrandt-Andrade C (2008) The GEOPRICO-DO Seismic Onshore-Offshore Project: a deep seismic survey of the crustal structure in the Northern Caribbean plate. Transactions of 18th Caribbean Geology Conference, Santo Domingo, Dominican Republic.Google Scholar
  15. Diebold JB, Stoffa PL, Buhl P, Truchan M (1981) Venezuelan Basin crustal structure. J Geophys Res 86:7901–7923CrossRefGoogle Scholar
  16. Diebold JB, Driscoll NW, EW-9501 Team (1999) New insights on the formation of the Caribbean basalt province revealed by multichannel seismic images of volcanic structures in the Venezuelan Basin. In: Hsü KJ (series ed), Mann P (ed) Sedimentary Basins of the World, vol 4. Caribbean Basins. Elsevier NY, pp 561–589Google Scholar
  17. Dillon WP, Edgar NT, Scanlon KM, Coleman DF (1996) A review of the tectonic problems or the strike-slip northern Boundary of the Caribbean plate and examination by GLORIA. In: Gardner JV, Field ME, Twichel DC (eds) Geology of the United States Seafloor: the view from GLORIA, vol 9. Cambridge University Press, United Kingdom, pp 135–164Google Scholar
  18. Discroll NW, Diebold JB (1998) Deformation of the Caribbean region: one plate or two? Geology 26(11):1043–1046CrossRefGoogle Scholar
  19. Dolan JF, Wald DJ (1998) 1943–1953 north-central Caribbean earthquakes. Geol Soc Am Spec Pap 326:143–169Google Scholar
  20. Dolan JF, Mullins HT, Wald DJ (1998) Active tectonics of north-central Caribbean: oblique collision, strain partitioning, and opposing subducted slabs. Geol Soc Am Spec Pap 326:1–62Google Scholar
  21. Dziewonski AM, Chou TA, Woodhouse JH (1981) Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J Geophys Res 86:2825–2852CrossRefGoogle Scholar
  22. Edgar NT, Ewing MI, Hennion J (1971) Seismic refraction and reflection in the Caribbean Sea. Am Ass Petrol Geol Bull 55:833–870Google Scholar
  23. Edgar NT, Saunders JB, et al. (1973) Initial reports of the Deep Sea Drilling Project, vol 15. U.S. Government Printing Office, Washington, DC, pp 17–471Google Scholar
  24. Engdahl ER, Villaseñor A (2002) Global seismicity: 1900–1999. In: Lee WHK, Kanamori H, Jennings PC, Kisslinger C (eds) International handbook of earthquake and engineering seismology, part A, vol 41. Academic Press, New York, pp 665–690Google Scholar
  25. Ewing JI, Officer CB, Johnson HR, Edwards RS (1957) Geophysical investigations in the eastern Caribbean: Trinidad Shelf, Tobago Trough, Barbados Ridge, Atlantic Ocean. Geol Soc Am Bull 68(7):897–912CrossRefGoogle Scholar
  26. Ewing J, Antonie J, Ewing M (1960) Geophysical measurements in the western Caribbean Sea and in the Gulf of Mexico. J Geophys Res 65(12):4087–4126CrossRefGoogle Scholar
  27. Flueh ER, Fisher MA, Bialas J, Childs JR, Klaeschen D, Kukowski N, Parsons T, Scholl DW, ten Brink U, Tre′hu AM, Vidal N (1998) New seismic images of the Cascadia subduction zone from cruise SO108—ORWELL. Tectonophysics 293:69–84CrossRefGoogle Scholar
  28. Forsthoff GM, Holcombe TL (1983) Quaternary turbidites of Muertos Trough north-eastern Caribbean sea. Composition, source and dispersal patterns. In: 10th Caribbean geological conference, proceedings, pp 353–367Google Scholar
  29. Gardner GHF, Gardner LW, Gregory AR (1974) Formation velocity and density: the diagnostic basics for stratigraphic traps. Geophysics 39:770–780CrossRefGoogle Scholar
  30. Granja Bruña JL (2008) Geodinámica del borde sur de las Antillas Mayores orientales. Ph.D. Thesis disertation, Universidad Complutense de Madrid, 300 pGoogle Scholar
  31. Granja Bruña JL, Carbó-Gorosabel A, Muñoz-Martín A, Llanes Estrada P (2008) Gravity Maps in the North-Eastern Caribbean Plate Boundary Zone. Transactions of the 18th Caribbean Geological Conference, p: 27. Santo Domingo, Dominican RepublicGoogle Scholar
  32. Granja Bruña JL, ten Brink U, Carbó-Gorosabel A, Muñoz-Martín A, Gómez M (2009) Morphotectonics of Central Muertos thrust belt and Muertos Trough (north-eastern Caribbean). Mar Geol 263:7–33. doi: 10.1016/j.margeo.2009.03.010 CrossRefGoogle Scholar
  33. Grow JA, Bowin CO (1975) Evidence for high-density crust and mantle beneath the Chile trench due to the descending lithosphere. J Geophys Res 80(11):1449–1458CrossRefGoogle Scholar
  34. Hayes DE (1966) A geophysical investigation of the Peru-Chile trench. Mar Geol 4:309–372CrossRefGoogle Scholar
  35. Holbrook WS, Lizarralde D, McGeary S, Bangs N, Diebold J (1999) Structure and composition of the Aleutian island arc and implications for continental crustal growth. Geology 27(1):31–34CrossRefGoogle Scholar
  36. Jansma PE, Mattioli GS, López A, DeMets C, Dixon TH, Mann P, Calais E (2000) Neotectonics of Puerto Rico and the Virgin Islands, north-eastern Caribbean, from GPS geodesy. Tectonics 19(6):1021–1037CrossRefGoogle Scholar
  37. Jany I (1989) Neotectonique au sud des Grandes Antilles, collision (ride de Beata, Presqu’ile de Bahoruco); subduction (fosse de Muertos); transtension (passage d’Anegada). Ph.D. thesis, Université Pierre-et-Marie-Curie (Paris-VI), Paris, 306 p. (Marine geophysical mapping of active faulting at the northern end of the Beata Ridge, the Muertos Trench, and the Anegada Passage)Google Scholar
  38. Kearey P, Klepeis KA, Vine F (2009) Global tectonics, 3rd edn. Blackwell, Oxford, p 496Google Scholar
  39. Ladd JW, Watkins JS (1978) Active margin structures within the north slope of the Muertos Trench. Geologie en Mijnbouw 57(2):255–260Google Scholar
  40. Ladd JW, Watkins JS (1979) Tectonic development of trench-arc complexes on the northern and southern margins of the Venezuela Basin. Memoir Am Ass Petrol Geol 29:363–371Google Scholar
  41. Ladd WJ, Worzel JL, Watkins JS (1977) Multifold seismic reflections records from the northern Venezuela basin and the north slope of Muertos trench. Marine Science Institute, University of Texas, pp 41–56Google Scholar
  42. Ladd JW, Tai-Chang Shih, Tsai CJ (1981) Cenozoic tectonics of central Hispaniola and adjacent Caribbean Sea. Am Ass Petrol Geol Bull 65:466–489Google Scholar
  43. Lagabrielle Y, Pelletier B, Cabioch G, Regnier M, Calmant S (2003) Coseismic and long-term vertical displacement due to back arc shortening, central Vanuatu; offshore and onshore data following the Mw 7.5, 26 November 1999 Ambrym earthquake. J Geophys Res 108(B11): 2519. doi: 10.1029/2002JB002083.Google Scholar
  44. Lewis JF, Draper G (1990) Geological and tectonic evolution of the northern Caribbean margin. In: Dengo G, Case JE (eds) The geology of North America, vol. H. The Caribbean region. Geological Society of America, pp 77–140Google Scholar
  45. Manaker D, Calais E, Freed A, Ali T, Przybylski P, Mattioli GS, Jansma PE, Pre’petit C, de Chabalier J-B (2008) Interseismic Plate coupling and strain partitioning in the north-eastern Caribbean. Geophys J Int 174(3):889–903CrossRefGoogle Scholar
  46. Mann P (1999) Caribbean Sedimentary Basins: classification and tectonic setting from jurassic to present. In: Hsü KJ (series ed), Mann P (ed) Sedimentary Basins of the World. Caribbean Basins, vol 4. Elsevier, NY, pp 3–31Google Scholar
  47. Mann P, Calais E, Ruegg JC, DeMets C, Jansma PE (2002). Oblique collision in the north-eastern Caribbean from GPS measurements and geological observations. Tectonics 2(6): 1057. doi: 10.1029/2001TC0011304
  48. Masson DG, Scanlon KM (1991) The neotectonic setting of Puerto Rico. Geol Soc Am Bull 103:144–154CrossRefGoogle Scholar
  49. Matthews J, Holcombe T (1974) Possible Caribbean underthrusting of the Greater Antilles along Muertos Trough. In: Transactions of the 7th Caribbean geological conference (Guadeloupe), pp 235–242Google Scholar
  50. Matthews JE, Holcombe TL (1985) Venezuelan Basin of the Caribbean Sea: stratigraphy and sediment distribution. Mar Geol 68:1–23CrossRefGoogle Scholar
  51. Mauffret A, Leroy S (1997) Seismic stratigraphy and structure of the Caribbean igneous province. Tectonophysics 283(1–4):61–104CrossRefGoogle Scholar
  52. Mauffret A, Leroy S (1999) Neogene intraplate deformation of the Caribbean plate at the Beata Ridge. In: Hsü KJ (series ed), Mann P (ed) Sedimentary Basins of the World, vol 4. Caribbean Basins. Elsevier, NY, pp 627–669Google Scholar
  53. McCann WR (2006) Estimating the threat of tsunamogenic earthquakes and earthquake induced landslide tsunami in the Caribbean. In: Mercado-Irizarry A, Liu LF (eds) Caribbean tsunami hazard. World Scientific Publishing, Singapore, pp 43–65CrossRefGoogle Scholar
  54. McCann WR (2007) The Muertos Trough as a major earthquake and tsunami hazard for Puerto Rico. Eos Trans AGU 88(23): Jt Assembly Suppl Abs S52A-03Google Scholar
  55. McCann W, Sykes L (1984) Subduction of aseismic ridges beneath the Caribbean plate: implications for the tectonics and seismic potential of the north-eastern Caribbean. J Geophys Res 89:4493–4519CrossRefGoogle Scholar
  56. Moore JC, Vrolijk P (1992) Fluids in accretionary prisms. Rev Geophys 30:113–135CrossRefGoogle Scholar
  57. Moore JC, Mascle A, Taylor E et al (1987) Expulsion of fluids from depth along a subduction zone decollement horizon. Nature 326:785–788CrossRefGoogle Scholar
  58. Mueller RD, Sdrolias M, Gaina C, Roest W R (2008) Age, spreading rates, and spreading asymmetry of the world’s ocean crust: G-Cubed 9, Q04006. doi: 10.1029/2007GC001743
  59. Nafe JE, Drake CL (1963) Physical properties of marine sediments. The Sea 3:794–815Google Scholar
  60. Officer CB, Ewing JI, Edwards RS, Johnson HR (1957) Geophysical investigations in the Caribbean. Geol Soc Am Bull 68:359–378CrossRefGoogle Scholar
  61. Officer CB, Ewing JI, Edwards RS, Harkrider DG, Miller DE (1959) Geophysical investigations in the eastern Caribbean. Summary of the 1955 and 1956 cruises. In: Ahrens LH et al (eds) Physics and chemistry of the earth, vol 3. Pergamon, London, pp 17–109Google Scholar
  62. Ranero CR, Villaseñor A, Phipps Morgan J, Weinrebe W (2005) Relationship between bend-faulting at trenches and intermediate-depth seismicity. Geochem Geophys Geosyst 6(12):25CrossRefGoogle Scholar
  63. Sandwell DT, Smith WHF (1997) Marine gravity anomaly from Geosat and ERS-1 satellite altimetry. J Geophys Res 102:10039–10054CrossRefGoogle Scholar
  64. Scherer J (1912) Great earthquakes in the island of Haiti. Bull Seismol Soc Am 2:161–180Google Scholar
  65. Seely DR, Vail PR, Walton GG (1974) Trench slope model. In: Burk CA, Drake CL (eds) The geology of continental margins. Springer, New York, pp 249–260Google Scholar
  66. Silver EA, Reed D, McCaffrey R (1983) Back arc thrusting in the eastern Sunda arc, Indonesia: a consequence of arc-continent collision. J Geophys Res 88(B9):7429–7448CrossRefGoogle Scholar
  67. Silver EA, Breen NA, Shipley TH (1985) Comments on the growth of accretionary wedges. Geology 13:6–9CrossRefGoogle Scholar
  68. Silver EA, Breen NA, Shipley TH (1986a) Reply on “Comments on the growth of accretionary wedges”. Geology 14:185–186CrossRefGoogle Scholar
  69. Silver EA, Breen NA, Prasetyo H, Hussong DM, Detrick RS (1986b) Multibeam study of the Flores back arc thrust belt, Indonesia. J Geophys Res 91(B3):3489–3500CrossRefGoogle Scholar
  70. Smith WHF, Sandwell DT (1997) Global seafloor topography from satellite altimetry and ship depth soundings. Science 277:1957–1962Google Scholar
  71. Smith AL, Schellekens JH, Muriel Díaz A-L (1998) Batholiths as markers of tectonic change in the north-eastern Caribbean. Spec Pap Geol Soc Am 322:99–122Google Scholar
  72. Stern RJ (2002) Subduction zones. Rev Geophys 40:1012. doi: 10.1029/2001RG000108 CrossRefGoogle Scholar
  73. Syracuse EM, Abers GA (2009) Systematic biases in subduction zone hypocenters. Geophys Res Lett 36:L10303. doi: 10.1029/2009GL037487 CrossRefGoogle Scholar
  74. ten Brink US (2005) Vertical motions in the Puerto Rico trench and Puerto Rico and their cause. J Geophys Res 100:B06404. doi: 10.1020/2004JB003459 CrossRefGoogle Scholar
  75. ten Brink U, Lin J (2004) Stress interaction between subduction earthquakes and forearc strike-slip faults: modeling and application to the northern Caribbean plate boundary. J Geophys Res 109:B12310. doi: 1029/2004JB003031 CrossRefGoogle Scholar
  76. ten Brink U, Marshak S, Granja JL (2009) Bivergent thrust wedges surrounding oceanic island arcs: insights from observations and sandbox models in the north-eastern Caribbean plate. Geol Soc Am Bull 121:1522–1536CrossRefGoogle Scholar
  77. van Gestel J-P, Mann P, Grindlay NR, Dolan JF (1998) Structure and tectonics of the upper Cenozoic Puerto Rico-Virgin Islands carbonate platform as determined from seismic reflection studies. J Geophys Res 103(B12):505–530Google Scholar
  78. Yuan T, Spence D, Hyndman RD (1994) Seismic velocities and inferred porosities in the accretionary wedge sediments at the Cascadia margin. J Geophys Res 99(B3):4413–4427CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • J. L. Granja Bruña
    • 1
  • A. Muñoz-Martín
    • 1
  • U. S. ten Brink
    • 2
  • A. Carbó-Gorosabel
    • 1
  • P. Llanes Estrada
    • 1
  • J. Martín-Dávila
    • 4
  • D. Córdoba-Barba
    • 3
  • M. Catalán Morollón
    • 4
  1. 1.Applied Tectonophysics Group, Departamento de GeodinámicaUniversidad Complutense de MadridMadridSpain
  2. 2.United States Geological SurveyWoods HoleUSA
  3. 3.Departamento de Física de la Tierra y Astrofísica IUniversidad Complutense de MadridMadridSpain
  4. 4.Real Instituto y Observatorio de la Armada, San FernandoSan Fernando-(Cádiz)Spain

Personalised recommendations