Marine Geophysical Researches

, Volume 30, Issue 1, pp 61–72 | Cite as

Variation of Icelandic and Hawaiian magmatism: evidence for co-pulsation of mantle plumes?

  • R. MjeldeEmail author
  • J. I. Faleide
Original Research Paper


Based on published estimates of areal extent, thickness and dating of igneous rocks related to formation of the North Atlantic Volcanic Province, we calculate the magmatic production since the first reported magmatism at 70 Ma until present. We relate the magmatism to the Icelandic Plume and estimate the total volumetric production to 22.1 × 106 km3. The magmatic production varied significantly with time, with a clear maximum of 55.5 m3/s around continental break-up at ca. 54 Ma. The lowest production is estimated at 4 m3/s, increasing to 7 m3/s at ca. 23 Ma. Two other pulses with increased activity are found around 40 Ma and in the late Miocene (10–5 Ma). The variations in productivity are consistent with a plume pulsing with a periodicity of ca. 15 million years. The same periodicity and relative timing is found for the Hawaiian Plume. If confirmed, these observations suggest that both plumes originate within the thin boundary layer near the Core-Mantle Boundary. This hypothesis may imply periodic heating of the earth’s core with subsequent heat-release to the mantle and increased global plume activity.


Icelandic Plume Hawaiian Plume Plume productivity Plume pulsation 



We thank engineers from the University of Bergen and engineers and scientists from Hokkaido University (HU) for invaluable participation in planning and executing the OBS surveys, on which much of these results are based. We acknowledge The Norwegian Petroleum Directorate (NPD), Statoil, Norsk Hydro, Total and the Norwegian Research Council (EUROMARGINS) for funding these projects. The present paper can to a large extent be attributed to the fruitful environment for scientific discussions the first author experienced during research stays at SOEST, Department of Geology and Geophysics, University of Hawaii (UH), and at Institute for Seismology and Volcanology, HU. We thank Dr. Asbjørn Breivik, University of Oslo, and Prof. Garrett Ito, SOEST, UH, for valuable discussions, Bent Ole Ruud for performing frequency analysis on the Iceland flux diagram, Beata Mjelde for drawing figures and Peter Clift, Andrew Kerr and one anonymous reviewer for critical comments.


  1. Barton AJ, White RS (1995) The Edoras Bank margin; continental break-up in the presence of a mantle plume. J Geol Soc Lond 152:971–974Google Scholar
  2. Barton AJ, White RS (1997) Crustal structure of Edoras Bank continental margin and mantle thermal anomalies beneath the North Atlantic. J Geophys Res 102:3109–3129CrossRefGoogle Scholar
  3. Bercovici D, Mahoney J (1994) Double flood basalts and plume separation at the 660-km discontinuity. Science 266:1367–1369CrossRefGoogle Scholar
  4. Birkenmajer K (1986) Tertiary tectonic deformation of lower Cretaceous dykes in a Precambrian terrane. Stud Geol Pol 89:31–44Google Scholar
  5. Breivik AJ, Mjelde R, Faleide JI, Murais Y (2006) Rates of continental break-up magmatism and seafloor spreading in the Norway Basin–Iceland Plume interaction. J Geophy Res 111:B07102. doi: 10.1029/2005JB004004 CrossRefGoogle Scholar
  6. Breivik AJ, Faleide JI, Mjelde R (2008) MORB hijacking by the Iceland plume. Geochem Geophys Geosyst doi:  10.1029/2007GC001750
  7. Breivik AJ, Faleide JI, Mjelde R, Flueh ER (2009) Magma productivity and early seafloor spreading rate correlation on the northern Vøring Margin, Norway—constraints on mantle melting. Tectonophysics 468:206–223CrossRefGoogle Scholar
  8. Brekke H (2000) The tectonic evolution of the Norwegian Sea continental margin, with emphasis on the Vøring and Møre basins. In: Nøttvedt A (ed) Dynamics of the Norwegian Margin. Geol Soc Lond Spec Publ 167:327–378Google Scholar
  9. Brooks CK, Gleadow AJW (1977) A fission-track age for the Skeargaard intrusion and the age of the East Greenland basalts. Geology 5:539–540CrossRefGoogle Scholar
  10. Bugge T, Prestvik T, Rokoengen K (1980) Lower Tertiary volcanic rocks off Kristiansund-Mid Norway. Mar Geol 35:215–220CrossRefGoogle Scholar
  11. Chambers LM, Pringle MS, Parrish RR (2005) Rapid formation of the small Isles Tertiary centre constrained by precise 40Ar/39Ar and U–Pb ages. Lithos 79:367–384CrossRefGoogle Scholar
  12. Coffin MF, Eldholm O (1994) Large igneous provinces: crustal structure, dimensions and external consequences. Rev Geophys 32:1–36CrossRefGoogle Scholar
  13. Courtillot V, Davaille A, Besse J, Stock J (2003) Three different types of hotspots in the Earth’s mantle. Earth Planet Sci Lett 205:295–308CrossRefGoogle Scholar
  14. Dickin AP (1981) Isotope geochemistry of Tertiary igneous rocks from the Isle of Skye, NW Scotland. J Petrol 22:155–189Google Scholar
  15. Dickin AP, Jones NW (1983) Isotope evidence for the age and origin of pitchstones and felsites, Isle of Eigg, NW Scotland. J Geol Soc Lond 140:691–700CrossRefGoogle Scholar
  16. Donn WL, Ninkovich D (1980) Rate of Cenozoic explosive volcanism in the North Atlantic Ocean inferred from deep sea cores. J Geophys Res 85:5455–5460CrossRefGoogle Scholar
  17. Eldholm E, Grue K (1994) North Atlantic volcanic margins: dimensions and production rates. J Geophys Res 99:2955–2968CrossRefGoogle Scholar
  18. Eldholm O, Thiede J, Taylor E (1989) Evolution of the Vøring Volcanic Margin. Proceedings ODP, Scientific Results 104, TX Ocean Drilling Program, College Station, pp 1033–1065Google Scholar
  19. Fechner N, Jokat W (1996) Seismic refraction investigations on the crustal structure of the western Jameson Land basein, east Greenland. J Geophys Res 101:15867–15881CrossRefGoogle Scholar
  20. Fitton JG, Larsen LM, Saunders AD, Hardarson BS, Kempton PD (2000) Palaeogene continental to oceanic magmatism on the SE Greenland continental margin at 63°N: a review of the results of Ocean Drilling Program Legs 152 and 163. J Petrol 41:951–966CrossRefGoogle Scholar
  21. Forsyth DA, Morel AL, Huissier P, Asudeh I, Green AG (1986) Alpha Ridge and Iceland; products of the same plume? J Geodyn 6:197–214CrossRefGoogle Scholar
  22. Foulger GR, Natland JH, Anderson DL (2005) A source for Icelandic magmas in remelted Iapetus crust. J Volcanol Geotherm Res 141:23–44CrossRefGoogle Scholar
  23. Gamble JA (1979) The geochemistry and petrogenesis of dolerites and gabbros from Tertiary Central Complex of Slieve Gullion, North East Ireland. Contrib Mineral Petrol 69:5–19CrossRefGoogle Scholar
  24. Geoffroy L (2001) The structure of volcanic margins: some problematics from the North-Atlantic/Labrador-Baffin system. Mar Pet Geol 18:463–469CrossRefGoogle Scholar
  25. Gibson D, McCormick AG, Meighan IG, Halliday AN (1987) The British Tertiary Igneous Province: young Rb–Sr ages for the Mourne Mountains granites. Scott J Geol 23:221–225Google Scholar
  26. Gleadow AJW, Brooks CK (1979) Fission track dating, thermal histories and tectonics of igneous intrusions in East Greenland. Contrib Mineral Petrol 71:45–60CrossRefGoogle Scholar
  27. Gordon RG, Jurdy DM (1986) Cenozoic global plate motion. J Geophys Res 91:12389–12406CrossRefGoogle Scholar
  28. Gurnis M (1988) Large-scale mantle convection and the aggregation and dispersal of supercontinents. Nature 332:695–699CrossRefGoogle Scholar
  29. Hirschmann MM, Renne PR, McBirney AR (1997) 40Ar–39Ar dating of the Skaergaard intrusion. Earth Planet Sci Lett 146:645–658CrossRefGoogle Scholar
  30. Hitchen K, Ritchie JD (1993) New K-Ar ages, and a provisional chronology, for the offshore part of the British Tertiary Igneous Province. Scott J Geol 29:73–85Google Scholar
  31. Holbrook WS, Larsen HC, Korenaga J, Dahl-Jensen T, Reid ID, Kelemen PB, Hopper JR, Kent GM, Lizarralde D, Bernstein S, Detrick RS (2001) Mantle thermal structure and active upwelling during continental break-up in the North Atlantic. Earth Planet Sci Lett 190:251–266CrossRefGoogle Scholar
  32. Holm PM, Grandvuinet T, Friis J, Wilson JR, Barker AK, Plesner S (2008) An 40Ar–39Ar study of the Cape Verde hot spot: temporal evolution in a semistationary plate environment. J Geophys Res 113:B08201. doi: 10.1029/2007JB005339 CrossRefGoogle Scholar
  33. Hooft EEE, Brandsdottir B, Mjelde R, Shimamura H, Murai Y (2006) Asymmetric plume-ridge interaction around Iceland: the Kolbeinsey Ridge Iceland Seismic Experiment. Geochem Geophys Geosyst 7:1–26. doi: 10.1029/2005GC001123 CrossRefGoogle Scholar
  34. Hopper JR, Dahl-Jensen T, Holbrook WS, Larsen HC, Lizarralde D, Korenaga J, Kent GM, Kelemen PB (2003) Structure of the SE Greenland margin from seismic reflection and refraction data: implications for nascent spreading center subsidence and asymmetric crustal accretion during North Atlantic opening. J Geophys Res 108:2269. doi: 10.1029/2002JB001996 CrossRefGoogle Scholar
  35. Ito G, Lin J, Gable W (1996) Dynamics of mantle flow and melting at a ridge-centered hotspot: Iceland and the Mid-Atlantic Ridge. Earth Planet Sci Lett 144:53–74CrossRefGoogle Scholar
  36. Jones SM, White N, Maclennan J (2002) V-shaped ridges around Iceland: implications for spatial and temporal patterns of mantle convection. Geochem Geophys Geosyst 3:1059. doi: 10.129/2002GC000361 CrossRefGoogle Scholar
  37. Karson JA, Brooks CK (1999) Structural and magmatic segmentation of the Tertiary East Greenland volcanic rifted margin. In: Mac Niocaill C, Ryan PD (eds) Continental tectonics. Geol Soc Lond Spec Publ 164:313–338Google Scholar
  38. King SC, Anderson DL (1998) Edge-driven convection. Earth Planet Sci Lett 160:289–296CrossRefGoogle Scholar
  39. Kodaira S, Mjelde R, Sellevoll MA, Hirschleber HB, Iwasaki T, Kanazawa T, Shimamura H (1995) Crustal transect across the Lofoten volcanic passive continental margin, N. Norway, obtained by use of ocean bottom seismographs, and implications for its evolution. J Phys Earth 43:729–745Google Scholar
  40. Kodaira S, Mjelde R, Shimamura H, Gunnarsson K, Shiobara H (1997) Crustal structure of the Kolbeinsey Ridge, N. Atlantic, obtained by use of ocean bottom seismographs. J Geophys Res 102:3131–3151CrossRefGoogle Scholar
  41. Kodaira S, Mjelde R, Gunnarsson K, Shiobara H, Shimamura H (1998) Evolution of oceanic crust on the Kolbeinsey Ridge, north of Iceland, over the past 22 million years. Terra Nova 10:27–31CrossRefGoogle Scholar
  42. Koppers AAP, Staudigel H, Wijbrans JR (2000) Dating crystalline groundmass separates of altered Cretaceous seamounts by the 40Ar/39Ar incremental heating technique. Chem Geol 166:139–158CrossRefGoogle Scholar
  43. Korenaga J, Holbrook WS, Kent GM, Detrick RS, Larsen HC, Hopper JR, Dahl-Jensen T (2000) Crustal structure of the Southeast Greenland margin from joint refraction and reflection seismic tomography. J Geophys Res 105:19163–19184CrossRefGoogle Scholar
  44. Larson RL (1991) Geological consequences of superplumes. Geology 19:963–966CrossRefGoogle Scholar
  45. Lawver LA, Müller RD (1994) Iceland hotspot track. Geology 22:311–314CrossRefGoogle Scholar
  46. Lundin E, Doré AG (2005) NE Atlantic break-up: a re-examination of the Iceland mantle plume model and the Atlantic-Arctic linkage. In: Doré AG, Vining BA (eds) Petroleum geology: North-West Europe and global perspectives—Proceedings of the 6th Petroleum Geology Conference. Geol Soc Lond, pp 739–754Google Scholar
  47. Maher HD (2001) Manifestations of the Cretaceous high Arctic large igneous province in Svalbard. J Geol 109:91–104CrossRefGoogle Scholar
  48. Mandler H, Jokat W (1998) The crustal structure of central east Greenland: results from combined land-sea seismic refraction experiments. Geophys J Int 135:63–76CrossRefGoogle Scholar
  49. Mjelde R, Sellevoll MA, Shimamura H, Iwasaki T, Kanazawa T (1992) A crustal study off Lofoten, N. Norway by use of 3-C ocean bottom seismographs. Tectonophysics 212:269–288CrossRefGoogle Scholar
  50. Mjelde R, Kodaira S, Shimamura H, Kanazawa T, Shiobara H, Berg EW, Riise O (1997) Crustal structure of the central part of the Vøring Basin, mid-Norway margin, from ocean bottom seismographs. Tectonophysics 277:235–257CrossRefGoogle Scholar
  51. Mjelde R, Digranes P, Shimamura H, Shiobara H, Kodaira S, Brekke H, Egebjerg T, Sørenes N, Thorbjørnsen T (1998) Crustal structure of the northern part of the Vøring Basin, mid-Norway margin, from wide-angle seismic and gravity data. Tectonophysics 293:175–205CrossRefGoogle Scholar
  52. Mjelde R, Digranes P, Van Schaack M, Shimamura H, Shiobara H, Kodaira S, Næss O, Sørenes N, Vågnes E (2001) Crustal structure of the outer Vøring Plateau, offshore Norway, from ocean bottom seismic and gravity data. J Geophys Res 106:6769–6791CrossRefGoogle Scholar
  53. Mjelde R, Breivik AJ, Raum T, Mittelstaedt E, Ito G, Faleide JI (2008a) Magmatic and tectonic evolution of the North Atlantic. J Geol Soc Lond 165:31–42CrossRefGoogle Scholar
  54. Mjelde R, Raum T, Breivik AJ, Faleide JI (2008b) Crustal transect across the North Atlantic. Mar Geophys Res (in press)Google Scholar
  55. Mjelde R, Faleide JI, Breivik AJ, Raum T (2008c) Lower crustal composition and crustal lineaments on the Vøring Margin, NE Atlantic: a review. Tectonophysics (in press)Google Scholar
  56. Moorbath S, Thompson RN (1980) Strontium isotope geochemistry and petrogenesis of the early Tertiary lava pile of the Isle of Skye, Scotland, and other basic rocks of the British Tertiary Province: an example of magma-crust interaction. J Petrol 21:295–321Google Scholar
  57. Mussett AE (1986) 40AR–39AR step-heating ages of the Tertiary igneous rocks of Mull, Scotland. J Geol Soc Lond 143:887–896CrossRefGoogle Scholar
  58. Mutter JC, Buck WR, Zehnder CM (1988) Convective partial melting, a model for the formation of thick basaltic sequences during the initiation of spreading. J Geophys Res 93:1031–1048CrossRefGoogle Scholar
  59. Nakagawa T, Tackley PJ (2004) Effects of a perovskite-post perovskite phase change near core-mantle boundary in compressible mantle convection. Geophys Res Int 31:L16611. doi: 10.1029/2004GL020648 Google Scholar
  60. Noble RH, Macintyre RM, Brown PE (1988) Age constraints on Atlantic evolution: timing of magmatic activity along the E Greenland continental margin. J Geol Soc Spec Publ 39:201–214CrossRefGoogle Scholar
  61. O'Connor JM, Stoffers P, Wijbrans JR, Shannon PM, Morrissey T (2000) Evidence from episodic seamount volcanism from pulsing of the Iceland plume in the past 70 million years. Nature 408:954–958CrossRefGoogle Scholar
  62. Pearson DG, Emeleus CH, Kelley SP (1996) Precise 40Ar/39Ar age for the initiation of Palaeogene volcanism in the Inner Hebrides and its regional significance. J Geol Soc Lond 153:815–818CrossRefGoogle Scholar
  63. Price S, Brodie J, Whitham A, Kent R (1997) Mid-tertiary rifting and magmatism in the Traill Ø region, East Greenland. J Geol Soc Lond 154:419–434CrossRefGoogle Scholar
  64. Richardson KR, Smallwood JR, White RS, Snyder D, Maguire PKH (1998) Crustal structure beneath the Faeroe Islands and the Faeroe-Iceland Ridge. Tectonophysics 300:159–180CrossRefGoogle Scholar
  65. Sandwell DT, Smith WHF (1997) Marine gravity anomaly from Geosat and ERS 1 satellite altimetry. J Geophys Res 102:10039–10054CrossRefGoogle Scholar
  66. Saunders AD, Fitton JG, Kerr AC, Norry MJ, Kent R.W (1997) The North Atlantic Igneous Province. In: Mahoney JJ, Coffin MF (eds) Large Igneous Provinces, AGU Geophys Monogr 100:45–93Google Scholar
  67. Schlindwein V, Jokat W (1999) Structure and evolution of the continental crust of northern east Greenland from integrated geophysical studies. J Geophys Res 104:15227–15245CrossRefGoogle Scholar
  68. Schmidt-Aursch M, Jokat W (2005) The crustal structure of central East Greenland-I: from the Caledonian orogen to the Tertiary igneous province. Geophys J Int 160:736–752CrossRefGoogle Scholar
  69. Sigmundsson F (2006) Iceland geodynamics: crustal deformation and divergent plate tectonics. Springer, Berlin, p 209Google Scholar
  70. Sinton CW, Duncan RA (1998) 40Ar–39Ar ages of lavas from the Southeast Greenland margin, ODP Leg 152, and the Rockall Plateau, DSDP Leg 81. Proc Ocean Drill Prog Sci Res 152:387–402Google Scholar
  71. Sinton CW, Hitchen K, Duncan RA (1998) 40Ar–39Ar geochronology of silicic and basic volcanic rocks. Geol Mag 135:161–170CrossRefGoogle Scholar
  72. Smallwood JR, Staples RK, Richardson KR, White RS (1999) Crust generated above the Iceland mantle plume: from continental rift to oceanic spreading center. J Geophys Res 104:22885–22902CrossRefGoogle Scholar
  73. Storey M, Duncan RA, Pedersen AK, Larsen LM, Larsen HC (1998) 40Ar/39A geochronology of the West Greenland Tertiary volcanic province. Earth Planet Sci Lett 160:569–586CrossRefGoogle Scholar
  74. Tackley PJ, Stevenson DJ, Glatzmaier GA, Schubert G (1993) Effects of an endothermic phase transition at 670 km depth in a spherical model of convection in the Earth’s mantle. Nature 361:699–704CrossRefGoogle Scholar
  75. Tarduno JA, Brinkman DB, Renne PR, Cottrell RD, Scher H, Castillo P (1998) Late Cretaceous Arctic volcanism: tectonic and climatic connections. In: Am Geophys Union spring meeting abstracts. Washinton DC, Am Geophys UnionGoogle Scholar
  76. Tarduno JA, Duncan RA, Scholl DW, Cottrell RD, Steinberger B, Thordarson T, Kerr BC, Neal CR, Frey FA, Torii M, Carvallo C (2003) The Emperor Seamounts: Southward motion of the Hawaiian hotspot plume in Earth`s mantle. Science 301:1064–1069CrossRefGoogle Scholar
  77. Tegner C, Duncan RA (1999) 40Ar–39Ar chronology for the volcanic history of the Southeast Greenland rifted margin. Proc Ocean Drill Prog Sci Res 163:53–62Google Scholar
  78. Tegner C, Duncan RA, Bernstein S, Brooks CK, Bird DK, Storey M (1998) 40Ar–39Ar geochronology of Tertiary mafic intrusions along the East Greenland rifted margin: relation to flood basalts and the Iceland hotspot track. Earth Planet Sci Lett 156:75–88CrossRefGoogle Scholar
  79. Thompson P, Musset AE, Dagley P (1987) Revised 40Ar–39Ar age for granites of the Mourne Mountains, Ireland. Scott J Geol 23:215–220CrossRefGoogle Scholar
  80. Torsvik TH, Cocks LRM (2005) Norway in space and time: a Centennial cavalcade. Nor J Geol 85:73–86Google Scholar
  81. Torsvik TH, Van Der Voo R, Meert JG, Mosar J, Walderhaug HJ (2001) Reconstructions of the continents around the North Atlantic at about the 60th parallel. Earth Planet Sci Lett 187:55–69CrossRefGoogle Scholar
  82. Tsikalas F, Eldholm O, Faleide JI (2005) Crustal structure of the Lofoten-Vesterålen continental margin off Norway. Tectonophysics 404:151–174CrossRefGoogle Scholar
  83. Upton BGJ (1988) History of Tertiary Igneous activity in the N-Atlantic borderlands. In: Morton AC, Parson LM (eds) Early Tertiary Volcanism and the opening of the NE-Atlantic. Geol Soc Lond Spec Publ, pp 429–453Google Scholar
  84. Upton BGJ, Emeleus CH, Rex DC, Thirlwall MF (1995) Early Tertiary magmatism in NE Greenland. J Geol Soc Lond 152:959–964Google Scholar
  85. Van Ark E, Lin J (2004) Time variation in igneous volume flux of the Hawaii-Emperor hot spot seamount chain. J Geophys Res 109:B11401. doi: 10.1029/2003JB002949 CrossRefGoogle Scholar
  86. Vogt PR (1971) Asthenospheric motion recorded by the ocean floor south of Iceland. Earth Planet Sci Lett 13:153–160CrossRefGoogle Scholar
  87. Vogt U, Makris J, O’Reilly BM, Hauser F, Readman PW, Jacob AWB, Shannon PM (1998) The Hatton Bank and continental margin: crustal structure from wide-angle seismic and gravity data. J Geophys Res 103:12545–12566CrossRefGoogle Scholar
  88. Voss M, Jokat W (2007) Continent-ocean transition and voluminous magmatic underplating derived from P-wave velocity modeling of the East Greenland continental margin. Geophys J Int 170:580–604CrossRefGoogle Scholar
  89. Weigel W, Flüh ER, Miller H, Butzke A, Dehghani GA, Gebhardt V, Harder I, Hepper J, Jokat W, Kläschen D, Kreymann S, Schüßler S, Zhao Z (1995) Investigations of the East Greenland continental margin between 70° and 72°N by deep seismic sounding and gravity studies. Mar Geophys Res 17:167–199CrossRefGoogle Scholar
  90. Weinberg RF, Podladchikov Y (1994) Diapiric ascent of magmas through power law crust and mantle. J Geophys Res 99:9543–9559CrossRefGoogle Scholar
  91. White RS, McKenzie D (1989) Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. J Geophys Res 94:7685–7729CrossRefGoogle Scholar
  92. White RS, Smith LK, Roberts AW, Christie PAF, Kuznir NJ (2008) Lower-crustal intrusion on the North Atlantic continental margin. Nature 452:460–464CrossRefGoogle Scholar
  93. Yamagishi Y, Yanagisawa, T, Stegman D, Yamano Y (2006) Thermal state in the mantle modified by the effects of PPV phase transition. 10th Symp Study of the Earth’s Deep Interior, July 9–14, Prague, Czech Republic (abstract)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Earth ScienceUniversity of BergenBergenNorway
  2. 2.Department of GeosciencesUniversity of OsloOsloNorway

Personalised recommendations