Marine Geophysical Researches

, Volume 30, Issue 1, pp 1–19 | Cite as

Variability of the bottom-simulating reflector (BSR) and its association with tectonic structures in the Chilean margin between Arauco Gulf (37°S) and Valdivia (40°S)

  • Cristián Rodrigo
  • Antonio González-Fernández
  • Emilio Vera
Original Research Paper


Multichannel seismic reflection data recorded between Arauco Gulf (37°S) and Valdivia (40°S), on the Chilean continental margin, were processed and modeled to obtain seismic images and sub-surface models, in order to characterize the variability of the bottom-simulating reflector (BSR), which is a geophysical marker for the presence of gas hydrates. The BSR is discontinuous and interrupted by submarine valleys, canyons, as well as by faults or fractures. The BSR occurrence is more common south of Mocha Island due to moderate slopes and greater organic matter contribution by rivers in that area. Tectonic uplift and structural instability change the stability gas hydrate zone and consequently the BSR position, creating in some cases missing or double BSRs. Our modeling supports the presence of gas hydrate above the BSR and free gas below it. Higher BSR amplitudes support higher hydrate or free gas concentrations. In the study area, gas hydrate concentration is low (an average of 3.5%) suggesting disseminated gas hydrate distribution within the sediments. Also higher BSR amplitudes are associated with thrust faults in the accretionary prism, which serve as conduits for gas flow from deeper levels. This extra gas supply produces a wider thickness of gas hydrates or free gas.


BSR Chilean margin Gas hydrates Reflection seismic Bathymetry Tectonic structures 



We thank the support of the Chilean FONDEF project D04I1111 (Hidratos de gas submarinos, análisis de los escenarios de exploración y producción como contribución a la matriz energética nacional), Centro de Investigación Científica y de Educación Superior de Ensenada of Mexico (CICESE), Instituto Antártico Chileno (INACH), and the Hydrographic and Oceanographic Service of the Chilean Navy (SHOA). We also thank the Federal Institute for Geosciences and Natural Resources of Germany (BGR) for releasing the SPOC seismic data. Constructive observations and valuable opinions from Nina Kukowski and Peter Clift are appreciated, and also the comments from an anonymous referee.


  1. Andreassen K, Hart PE, Grantz A (1995) Seismic studies of a bottom-simulating reflection related to gas hydrate beneath the continental margin of the Beaufort Sea. J Geophys Res 100:12659–12673. doi: 10.1029/95JB00961 CrossRefGoogle Scholar
  2. Bangs NL, Cande SC (1997) Episodic development of a convergent margin inferred from structures and processes along the Southern Chile margin. Tectonics 16:489–503. doi: 10.1029/97TC00494 CrossRefGoogle Scholar
  3. Bangs NB, Sawyer DS, Golovchenko X (1993) Free gas at the base of the gas hydrate zone in the vicinity of the Chile Triple Junction. Geology 21:905–908. doi: 10.1130/0091-7613(1993)021<0905:FGATBO>2.3.CO;2 CrossRefGoogle Scholar
  4. Behrmann JH, Lewis SD, Musgrave RJ (1992) Proceedings of the Ocean Drilling Program. Initial Reports 141. College Station, TX, p 706Google Scholar
  5. Brown KM, Bangs NL, Froelich PN, Kvenvolden KA (1996) The nature, distribution, and origin of gas hydrate in the Chile Triple Junction region. Earth Planet Sci Lett 139:471–483. doi: 10.1016/0012-821X(95)00243-6 CrossRefGoogle Scholar
  6. Bünz S, Mienert J, Vanneste M, Andreassen K (2005) Gas hydrate at the Storegga slide: constraints from an analysis of multicomponent, wide-angle seismic data. Geophysics 70:B19–B34. doi: 10.1190/1.2073887 CrossRefGoogle Scholar
  7. Cande SC, Leslie RB, Parra JC, Hobart M (1987) Interaction between the Chile trench: geophysical and geothermal evidence. J Geophys Res 92:495–520. doi: 10.1029/JB092iB01p00495 CrossRefGoogle Scholar
  8. Carcione JM, Tinivella U (2000) Bottom-simulating reflectors: seismic velocities and AVO effects. Geophysics 65:54–67. doi: 10.1190/1.1444725 CrossRefGoogle Scholar
  9. Caress DW, Chayes DN (1999) Mapping the seafloor: software for the processing and display of swath sonar data
  10. Castagna JP, Batzle ML, Eastwood RL (1985) Relationships between compressional-wave and shear-wave velocities in clastic silicate rocks. Geophysics 50:571–581. doi: 10.1190/1.1441933 CrossRefGoogle Scholar
  11. Clift P, Vannucchi P (2004) Controls on tectonic accretion versus erosion in subduction zones; implications for the origin and recycling of the continental crust. Rev Geophys 42(RG2001). doi: 10.1029/2003RG000127
  12. Coffin R, Pohlman J, Gardner J, Downer R, Wood W, Hamdan L, Walker S, Plummer R, Gettrust J, Diaz J (2007) Methane hydrate exploration on the mid Chilean coast: a geochemical and geophysical survey. J Petrol Sci Eng 56:32–41. doi: 10.1016/j.petrol.2006.01.013 CrossRefGoogle Scholar
  13. Contardo X, Cembrano J, Jensen A, Díaz-Naveas J (2008) Tectono-sedimentary evolution of marine slope basins in the Chilean forearc (33°30′–36°50′S): Insights into their link with the subduction process. Tectonophysics 459:206–218. doi: 10.1016/j.tecto.2007.12.014 CrossRefGoogle Scholar
  14. Dash RK, Sain K, Thakur NK (2004) Overpressure detection from seismic amplitude versus offset response: an application to gas-hydrates. Curr Sci 86:985–990Google Scholar
  15. Diaz J (1999) Sediments subduction and accretion at the Chilean convergent margin between 35° and 40°S. Dissertation zur Erlangung des Doktorgrades der Mathematish-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel p 130Google Scholar
  16. Diaz-Naveas J (2003) Report on Chilean hydrates cruises. 3rd International Workshop on Methane Hydrate R&D.
  17. Ecker C, Dvorkin J, Nur A (1998) Sediments with gas hydrates: internal structure from seismic AVO. Geophysics 63:1659–1669. doi: 10.1190/1.1444462 CrossRefGoogle Scholar
  18. Ecker C, Dvorkin J, Nur AM (2000) Estimating the amount of gas hydrates and free gas from marine seismic data. Geophysics 65:565–573. doi: 10.1190/1.1444752 CrossRefGoogle Scholar
  19. Fuchs K, Müller G (1971) Computation of synthetic seismograms with the reflectivity method and comparison with observations. Geophys J R Astron Soc 23:417–433Google Scholar
  20. Gazdag J (1978) Wave-equation migration by phase shift. Geophysics 43:1342–1351. doi: 10.1190/1.1440899 CrossRefGoogle Scholar
  21. González E (1989) Hydrocarbon resources in the coastal zone of Chile. In: Ericksen GE, Canas-Pinochet MT, Reinemund JA (eds) Geology of the Andes and its relation to hydrocarbon and mineral resources. Earth Science Series 11. Circum-Pacific Council for Energy and Mineral Resources, Houston, pp 383–404Google Scholar
  22. Grevemeyer I, Villinger H (2001) Gas hydrate stability and the assessment of heat flow through continental margins. Geophys J Int 145:647–660. doi: 10.1046/j.0956-540x.2001.01404.x CrossRefGoogle Scholar
  23. Grevemeyer I, Diaz-Naveas JL, Ranero CR, Villinger HW, Ocean Drilling Program Leg 202 Scientific Party (2003) Heat flow over the descending Nazca plate in central Chile, 32°S to 41°S: observations from ODP Leg 202 and the occurrence of natural gas hydrates. Earth Planet Sci Lett 213:285–298. doi: 10.1016/S0012-821X(03)00303-0 CrossRefGoogle Scholar
  24. Hamilton EL (1976) Sound attenuation as a function of depth in the sea floor. J Acoust Soc Am 59:528–535. doi: 10.1121/1.380910 CrossRefGoogle Scholar
  25. Holbrook WS, Hoskins H, Word WT, Stephen RA, Lizarralde D, Leg 164 Science Party (1996) Methane hydrate and free gas on the Blake Ridge from vertical seismic profiling. Science 273:1840–1843. doi: 10.1126/science.273.5283.1840 CrossRefGoogle Scholar
  26. Hornbach MJ, Holbrook WS, Gorman AR, Hackwith KL, Lizarralde D, Pecher I (2003) Direct seismic detection of methane hydrate on the Blake Ridge. Geophysics 68:92–100. doi: 10.1190/1.1543196 CrossRefGoogle Scholar
  27. Hyndman RD, Dallimore SR (2001) Natural gas hydrate studies in Canada. CSEG Recorder, pp 16–20Google Scholar
  28. Hyndman RD, Davis EE (1992) A mechanism for the formation of methane hydrate and seafloor bottom simulation reflectors by vertical fluid expulsion. J Geophys Res 97:7025–7041. doi: 10.1029/91JB03061 CrossRefGoogle Scholar
  29. Kastner M (2001) Gas hydrates in convergent margins: formation, occurrence, geochemistry, and global significance. In: Paull CK, Dillon WP (eds) Natural gas hydrates: occurrence, distribution, and detection. American Geophysical Union, Washington, DC, pp 67–86Google Scholar
  30. Kennett BLN (1974) Reflections, rays, and reverberations. Bull Seismol Soc Am 64:1685–1696Google Scholar
  31. Korenaga J, Holbrook W, Singh S, Minshull T (1997) Natural gas hydrates on the southeast US margin: constraints from full waveform and travel time inversions of wide-angle seismic data. J Geophys Res 102:15345–15365. doi: 10.1029/97JB00725 CrossRefGoogle Scholar
  32. Kus JM, Block J, Diaz-Naveas J Urbina (2001) Structural details of the continental wedge of area A -a model hypothesis. In: Reichert C, Schreckenberger B (eds) Cruise Report Sonne cruise SO-161 Leg 2 &3Google Scholar
  33. Kvenvolden KA (1988) Methane hydrate—a major reservoir of carbon in the shallow geosphere? Chem Geol 71:41–51. doi: 10.1016/0009-2541(88)90104-0 CrossRefGoogle Scholar
  34. Kvenvolden KA (1998) A primer on the geological occurrence of gas hydrate. In: Henriet JP, Mienert J (eds) Gas hydrates: relevance to world margin stability and climate change. Geological Society, London, 137:9–30Google Scholar
  35. Kvenvolden KA, Barnard L (1983) Hydrates of natural gas in continental margins. In: Watkins JS, Drake CL (eds) Studies in continental margin geology. American Association of Petroleum Geologists Memoirs 34:631–640Google Scholar
  36. Lee MW, Hutchinson DR, Dillon WP, Miller JJ, Agena WF, Swift AB (1993) Method of estimating the amount of in situ gas hydrates in deep marine sediments. Mar Pet Geol 10:493–506. doi: 10.1016/0264-8172(93)90050-3 CrossRefGoogle Scholar
  37. Lee MW, Hutchinson DR, Collett TS, Dillon WP (1996) Seismic velocities for hydrate-bearing sediments using weighted equation. J Geophys Res 101:20347–20358. doi: 10.1029/96JB01886 CrossRefGoogle Scholar
  38. Lodolo E, Camerlenghi A, Madrussani G, Tinivella U, Rossi G (2002) Assessment of gas hydrate and free gas distribution on the South Shetland margin (Antarctica) based on multichannel seismic reflection data. Geophys J Int 148:103–119. doi: 10.1046/j.0956-540x.2001.01576.x CrossRefGoogle Scholar
  39. Lu S, McMechan GA (2002) Estimation of gas hydrate and free gas saturation, concentration, and distribution from seismic data. Geophysics 67:582–593. doi: 10.1190/1.1468619 CrossRefGoogle Scholar
  40. Ludwig JW, Nafe JE, Drake CL (1970) Seismic refraction. In: Maxwell AE (ed) The sea 4. Wiley, New York, pp 53–84Google Scholar
  41. MacKay ME, Jarrard RD, Westbrook GK, Hyndman RD, Shipboard Scientific Party of ODP Leg 146 (1994) Origin of bottom-simulating reflectors: geophysical evidence from the Cascadia accretionary prism. Geology 22:459–462. doi: 10.1130/0091-7613(1994)022<0459:OOBSRG>2.3.CO;2 CrossRefGoogle Scholar
  42. Matsumoto R, Paull C, Wallace P (1996) Leg 164 preliminary report, Ocean Drilling Program. Gas hydrate sampling on the Blake Ridge and Carolina Rise, p 72Google Scholar
  43. Miller JJ, Lee MW, von Huene R (1991) An analysis of a seismic reflection from the base of a gas hydrate zone, offshore Peru. Am Assoc Pet Geol Bull 75:910–924Google Scholar
  44. Minshull TA, Singh SC, Westbrook GK (1994) Seismic velocity structure at a gas hydrate reflector, offshore western Colombia, from full waveform inversion. J Geophys Res 99:4715–4734. doi: 10.1029/93JB03282 CrossRefGoogle Scholar
  45. Mix AC, Tiedemann R, Blum P (2003) Proceedings of the Ocean Drilling Program. Initial Reports, 202 (CD-ROM). Ocean Drilling Program, Texas A&M University, College Station, TX 77845-9547, USAGoogle Scholar
  46. Müller G (1985) The reflectivity method: a tutorial. J Geophys 58:153–174Google Scholar
  47. Paull CK, Ussler W, Dillon WP (1991) Is the extent of glaciation limited by marine gas-hydrates? Geophys Res Lett 18:432–434. doi: 10.1029/91GL00351 CrossRefGoogle Scholar
  48. Paull CK, Matsumoto R, Wallace PJ (1996) Proceedings of the Ocean Drilling Program. Initial Reports, College Station, TX, p 623Google Scholar
  49. Pearson CF, Halleck PM, McGurle PL, Hermes R, Mathews M (1983) Natural gas hydrate: a review of in situ properties. J Phys Chem 87:4180–4185. doi: 10.1021/j100244a041 CrossRefGoogle Scholar
  50. Pearson CF, Murphy WF, Hermes R (1986) Acoustic and resistivity measurements on rock samples containing tetrahydrofuran hydrates: laboratory analogous to natural gas hydrate deposits. J Geophys Res 91:132–138. doi: 10.1029/JB091iB14p14132 CrossRefGoogle Scholar
  51. Pecher IA, Ranero C, von Huene R, Minshull TA, Singh SC (1998) The nature and distribution of bottom simulating reflectors at the Costa Rican convergent margin. Geophys J Int 133:219–229. doi: 10.1046/j.1365-246X.1998.00472.x CrossRefGoogle Scholar
  52. Pecher I, Kukowski N, Ranero C, von Huene R (2001) Gas hydrates along the Peru and Middle America trench systems. Natural gas hydrates: occurrence, distribution, and detection. Geophys Monogr 124:257–271Google Scholar
  53. Reichert C, Schreckenberger B (2001) Cruise Report Sonne cruise SO-161 Leg 2 &3, SPOC Subduction Processes off Chile. Federal Institute for Geosciences and Natural Resources (BGR), Germany, p 154Google Scholar
  54. Rodrigo C, González A, Vera E, Díaz J, Morales E (2004) Hidratos de gas submarino en el margen chileno: análisis sísmico preliminar del reflector simulador del fondo (BSR). GEOS 24:116–117Google Scholar
  55. Rodrigo C, Vera E, González-Fernández A (2009) Seismic analysis and distribution of a bottom-simulating reflector (BSR) in the Chilean margin offshore of Valdivia (40°S). J S Am Earth Sci 27:1–10. doi: 10.1016/j.jsames.2008.11.001 CrossRefGoogle Scholar
  56. Rowe MM, Gettrust JF (1993) Fine structure of methane-bearing sediments on the Blake Outer Ridge as determined from deep-tow multichannel seismic data. J Geophys Res 98:2039–2062. doi: 10.1029/92JB02279 CrossRefGoogle Scholar
  57. Shipley TH, Houston MH, Buffler RT, Shaub FJ, McMillen KJ, Ladd JW, Worze JL (1979) Seismic reflection evidence for widespread occurrence of possible gas-hydrate horizons on continental slopes and rises. Am Assoc Pet Geol Bull 63:2204–2213Google Scholar
  58. Singh SC, Minshull TA, Spence GD (1993) Velocity structure of a gas hydrate reflector. Science 260:204–207. doi: 10.1126/science.260.5105.204 CrossRefGoogle Scholar
  59. Sloan ED (1990) Clathrate hydrates of natural gases. In: Bekker M (ed) New York, p 641Google Scholar
  60. Smith WHF, Wessel P (1990) Gridding with continuous curvature splines in tension. Geophysics 55:293–305. doi: 10.1190/1.1442837 CrossRefGoogle Scholar
  61. Stoll RD (1974) Effects of gas hydrate in sediments. In: Kaplan I (ed) Natural gases in marine sediment. Plenum, New York, pp 235–248Google Scholar
  62. Suess E, Bohrmann G, von Huene R, Linke P, Wallmann K, Sahling H, Lammers S, Winckler G, Lutz RA, Orange D (1998) Fluid venting in the eastern Aleutian subduction zone. J Geophys Res 103:2597–2614. doi: 10.1029/97JB02131 CrossRefGoogle Scholar
  63. Suess E, Torres M, Bohrmann G, Collier RW, Rickert D, Goldfinger C, Linke P, Heuser A, Sahling H, Heeschen K, Jung C, Nakamura KI, Greinert J, Pfannkuche O, Trehu A, Klinkhammer G, Whiticar M, Eisenhauer A, Teichert B, Elvert M (2001) Sea floor methane hydrates at Hydrate Ridge, Cascadia Margin, In: Paull C, Dillon W (eds) Natural gas hydrates: occurrence, distribution, and detection: geophysical monograph series, American Geophysical Union, Monograph Series 124:87–98Google Scholar
  64. Uchida T, Dallimore S, Mikami J, Nixon M (1999) Occurrences of natural gas hydrates obtained from the JAPEX/JNOC/GSC Mallik 2L-38 research well and their X-ray CT observations. In: Dallimore S, Uchida T, Collett T (eds) Scientific Results from JAPEX/JNOC/GSC Mallik 2L-38 Gas Hydrate Research Well, Mackenzie Delta, Northwest Territories, Canada. Geological Survey of Canada Bulletin 544:197–204Google Scholar
  65. Vera EE, Mutter JC, Bhul P, Orcutt JA, Harding AJ, Kappus ME, Detrick RS, Brocher TM (1990) The structure of 0- to 0.2-m.y.-old oceanic crust at 9°N on the East Pacific Rise from expanded spread profiles. J Geophys Res 95:15529–15556. doi: 10.1029/JB095iB10p15529 CrossRefGoogle Scholar
  66. Vera E, Yañez G, Comte D, Diaz J, Morales E, Núñez R (2003) Hidratos de gas submarinos en el margen chileno: resultados preliminares del estudio geofísico. In: X Congreso Geológico Chileno, Concepción, Chile, 6–10 Octubre 2003 CDROM Google Scholar
  67. von Huene R, Pecher IA (1999) Neotectonics and the origins of BSRs along the Peru margin. Earth Planet Sci Lett 166:47–55CrossRefGoogle Scholar
  68. Wenzel F, Stoffa PL, Buhl P (1982) Seismic modeling in the domain of intercept time and ray parameter. Institute of Electrical and Electronics Engineers. On Acoustics. Speech Signal Process ASSP-30:406–423. doi: 10.1109/TASSP.1982.1163906
  69. Wood WT, Stoffa PL, Shipley TH (1994) Quantitative detection of methane hydrate through high-resolution seismic velocity analysis. J Geophys Res 99:9681–9695. doi: 10.1029/94JB00238 CrossRefGoogle Scholar
  70. Yuan T, Spence GD, Hyndman RD, Minshull TA, Singh SC (1999) Seismic velocity studies of a gas hydrate bottom-simulating reflector on the northern Cascadia continental margin: Amplitude modelling and full waveform inversion. J Geophys Res 104:1179–1191. doi: 10.1029/1998JB900020 CrossRefGoogle Scholar
  71. Zapata R (2001) Estudio batimétrico del margen chileno. Tesis de Magister. Universidad de Chile, Departamento de Geofísica, Santiago, Chile, p 113Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Cristián Rodrigo
    • 1
    • 3
  • Antonio González-Fernández
    • 1
  • Emilio Vera
    • 2
  1. 1.División Ciencias de la TierraCentro de Investigación Científica y de Educación Superior de EnsenadaEnsenadaMexico
  2. 2.Departamento de GeofísicaUniversidad de ChileSantiagoChile
  3. 3.Departamento CientíficoInstituto Antártico ChilenoPunta ArenasChile

Personalised recommendations