Marine Geophysical Researches

, Volume 29, Issue 2, pp 135–158 | Cite as

Crustal structure and tectonic provinces of the Riiser-Larsen Sea area (East Antarctica): results of geophysical studies

  • G. Leitchenkov
  • J. Guseva
  • V. Gandyukhin
  • G. Grikurov
  • Y. Kristoffersen
  • M. Sand
  • A. Golynsky
  • N. Aleshkova
Original Research Paper


About 16,000 km of multichannel seismic (MCS), gravity and magnetic data and 28 sonobuoys were acquired in the Riiser-Larsen Sea Basin and across the Gunnerus and Astrid Ridges, to study their crustal structure. The study area has contrasting basement morphologies and crustal thicknesses. The crust ranges in thickness from about 35 km under the Riiser-Larsen Sea shelf, 26–28 km under the Gunnerus Ridge, 12–17 km under the Astrid Ridge, and 9.5–10 km under the deep-water basin. A 50-km-wide block with increased density and magnetization is modeled from potential field data in the upper crust of the inshore zone and is interpreted as associated with emplacement of mafic intrusions into the continental margin of the southern Riiser-Larsen Sea. In addition to previously mapped seafloor spreading magnetic anomalies in the western Riiser-Larsen Sea, a linear succession from M2 to M16 is identified in the eastern Riiser-Larsen Sea. In the southwestern Riiser-Larsen Sea, a symmetric succession from M24B to 24n with the central anomaly M23 is recognized. This succession is obliquely truncated by younger lineation M22–M22n. It is proposed that seafloor spreading stopped at about M23 time and reoriented to the M22 opening direction. The seismic stratigraphy model of the Riiser-Larsen Sea includes five reflecting horizons that bound six seismic units. Ages of seismic units are determined from onlap geometry to magnetically dated oceanic basement and from tracing horizons to other parts of the southern Indian Ocean. The seaward edge of stretched and attenuated continental crust in the southern Riiser-Larsen Sea and the landward edge of unequivocal oceanic crust are mapped based on structural and geophysical characteristics. In the eastern Riiser-Larsen Sea the boundary between oceanic and stretched continental crust is better defined and is interpreted as a strike-slip fault lying along a sheared margin.


Antarctica Continental margin Riiser-Larsen Sea Geophysical data Seismic stratigraphy Crust 



This contribution is part of a joint research project between PMGE/VNIIOkeangeologia, the University of Bergen and NPD. Project support was provided by NPD. We thank Harald Brekke and Olvar Løvas from NPD for their support and encouragement during the project. We are grateful to Alan Cooper for his helpful comments and for language improvement and to an anonymous reviewer for his constructive criticism.


  1. Artyushkov EV (1994) Physical tectonics. Moscow. Nauka 457 (In Russian)Google Scholar
  2. Belyatskii BV, Sushchevskaya NM, Leitchenkov GL, Mikhalskii EM, Laiba AA (2006) Magmatism of the Karoo-Maud superplume in the Schirmacher Oasis, East Antarctica. Dokl Earth Sci 406(1):128–131. doi: 10.1134/S1028334X06010314 CrossRefGoogle Scholar
  3. Bergh HW (1977) Mesozoic sea floor off Dronning Maud Land, Antarctica. Nature 269:686–687. doi: 10.1038/269686a0 CrossRefGoogle Scholar
  4. Bergh HW (1987) Underlying fracture zone nature of Astrid Ridge off Antarctica’s Queen Land. J Geophys Res 92:475–484. doi: 10.1029/JB092iB01p00475 CrossRefGoogle Scholar
  5. Cande SC, Kent DV (1995) Revised calibration of the geomagnetic polarity time scale for the Late Cretaceous and Cenozoic. J Geophys Res 100:6093–6096. doi: 10.1029/94JB03098 CrossRefGoogle Scholar
  6. Carlson RL (1998) Seismic velocities in the uppermost oceanic crust; age dependence and the fate of layer 2A. J Geophys Res 103:7069–7077. doi: 10.1029/97JB03577 CrossRefGoogle Scholar
  7. Christensen NI, Mooney WD (1995) Seismic velocity structure and composition of the continental crust: a global view. J Geophys Res 100:9761–9788. doi: 10.1029/95JB00259 CrossRefGoogle Scholar
  8. Cooper AK, O’Brien PE (2004) Leg 188 synthesis: transitions in the glacial history of the Prydz Bay region, East Antarctica, from ODP drilling. In: Cooper AK, O’Brien PE, Richter C (eds) Proc ODP, Sci Results, vol 188, pp 1–42Google Scholar
  9. Cox KG (1992) Karoo igneous activity, and the early stages of the break-up of Gondwanaland. In: Storey BC, Alabaster BC, Pankhurst T (eds) Magmatism and causes of continental break-up, Geol Soc London Spec Publ, vol 68, pp 137–148Google Scholar
  10. Damaske D, Markinkovski V, Möller H-D (2005) Aeromagnetic survey in Central Dronning Maud Land, East Antarctica, during the 1995/1996 GeoMaud expedition: layout, execution and data processing. In: Paech H-J (ed) International GeoMaud expedition of the BGR to central dronning Maud Land in 1995/96—Geophysical and other results. Geol Jb, vol 11, pp 53–84Google Scholar
  11. Duncan RA, Hooper PR, Rehacek J, Marsh JS, Duncan AR (1997) The timing and duration of the Karoo igneous event, southern Gondwana. J Geophys Res 102:18127–18138. doi: 10.1029/97JB00972 CrossRefGoogle Scholar
  12. GEBCO Digital Atlas Ver 9 (1997) The International Hydrographic Organization the the International Oceanographic CommissionGoogle Scholar
  13. Gladczenko TP, Skogseid J, Eldhom O (1998) Namibia volcanic margin. Mar Geophys Res 20:313–341. doi: 10.1023/A:1004746101320 CrossRefGoogle Scholar
  14. Golynsky AV, Alyavdin SV, Masolov VN, Tscherinov AS, Volnukhin VS (2002) The composite magnetic anomaly map of the East Antarctica. Tectonophysics 347:109–120. doi: 10.1016/S0040-1951(01)00240-2 CrossRefGoogle Scholar
  15. Golynsky A, Blankenship D, Chiappini M, Damaske D, Ferraccioli F, Finn C von Frese R, the ADMAP Working Group et al (2007) New magnetic anomaly map of East Antarctica and surrounding regions. In: Cooper AK, Raymond CR et al (eds) Antarctica: a keystone in a changing world—Online Proceedings of the Tenth International Symposium on Antarctic Earth Science, USGS, August 2007, Open-File Report 2007-1047 (doi: 10.3133/of2007.srp050)
  16. Grantham GH (1996) Aspects of Jurassic magmatism and faulting in western Dronning Maud Land, Antarctic: implications for Gondwana break-up. In: Storey BC, King EC, Livermore RA (eds) Weddell Sea Tectonics and Gondwana Break-up. Geol Soc London Spec Publ, vol 108, pp 63–71Google Scholar
  17. Hinz K, Krause W (1982) The continental margin of Queen Maud Land/Antarctica: seismic sequences, structural elements and geological development. Geol Jb E 23:17–41Google Scholar
  18. Hinz K, Neben S, Gouseva YB, Kudryavtsev GA (2004) A compilation of geophysical data from the Lazarev Sea and the Riiser-Larsen Sea, Antarctica. Mar Geophys Res 25:233–245. doi: 10.1007/s11001-005-1319-y CrossRefGoogle Scholar
  19. Holbrook WS, Reiter EC, Purdu GM, Sawer D, Stoffa PL, Austin JA, et al (1994) Deep structure of the US atlantic continental margin, offshore South Carolina, from coincident ocean bottom and multichannel seismic data. J Geophys Res 99(B5):9155–9178. doi: 10.1029/93JB01821 CrossRefGoogle Scholar
  20. Jokat W, Boebel T, Konig M, Meyer U (2003) Timing and geometry of early Gondwana breakup. J Geophys Res 108(B9):2428. doi: 10.1029/2002JB001802 CrossRefGoogle Scholar
  21. Keen CE, De Voogd B (1988) The continent-ocean boundary at the rifted margin off eastern Canada: new results from deep seismic reflection studies. Tectonics 7(1):107–124. doi: 10.1029/TC007i001p00107 CrossRefGoogle Scholar
  22. Kogan AL (1972) Results of deep seismic soundings of the earth’s crust in east Antarctica. In: Adie RJ (ed) Antarctic snow and ice physics, Universitetsforlaget, Oslo, pp 485–489Google Scholar
  23. König M, Jokat W (2006) The Mesozoic breakup of the Weddell Sea. J Geophys Res 111:B12102. doi: 10.1029/2005JB004035 CrossRefGoogle Scholar
  24. Kusznir NJ, Karner GD (2007) Continental lithosphere thinning and breakup in response to upwelling divergent mantle flow: application to the Woodlark, Newfoundland and Iberia margins. In: Karner GD, Manatschal G, Pinheiro LM (eds) Imaging, mapping and modeling continental lithosphere extension and breakup. Geol Soc London Spec Publ, vol 282, pp 389–420Google Scholar
  25. Kuvaas B, Kristoffersen Y (1991) The crary fan: a trough-mouth fan on the Weddell sea continental margin, Antarctica. Mar Geol 97:345–362. doi: 10.1016/0025-3227(91)90125-N CrossRefGoogle Scholar
  26. Kuvaas B, Kristoffersen Y, Leitchenkov G, Guseva J, Gandjukhin V (2004a) Seismic expression of glaciomarine deposits in the eastern Riiser-Larsen Sea, Antarctica. Mar Geol 207:1–15. doi: 10.1016/j.margeo.2004.04.004 CrossRefGoogle Scholar
  27. Kuvaas B, Kristoffersen Y, Guseva J, Leitchenkov G, Gandjukhin V, Kudryavtsev G (2004b) Input of glaciomarine sediments along the East Antarctic continental margin; depositional processes on the Cosmonaut Sea continental slope and rise and a regional acoustic stratigraphic correlation from 40W to 80E. Mar Geophys Res 25:247–263. doi: 10.1007/s11001-005-1321-4 CrossRefGoogle Scholar
  28. Lawver LA, Gahagan LM, Coffin MF (1992) The development of paleoseaways around Antarctica. In: Kennet JP, Wornke DA (eds) The Antarctic paleoenvironment: a perspective on global change AGU, Antarctic Res Ser, vol 56, pp 7–30Google Scholar
  29. Lawver LA, Gahagan LM, Dalziel IWD (1999) A tight fit-Early Mesozoic Gondwana, a plate reconstruction perspective. In: Motoyoshi Y Shiraishi K (eds) Origin and evolution of continents. Mem Nat Inst Polar Res, vol 53, pp 214–229Google Scholar
  30. Leitchenkov G, Gouseva Y, Gandyukhin V et al (2003) Identification of Continent-to-Ocean Boundary on the Antarctic Passive Margin. In: Futterer DK (ed) Abstracts ninth international symposium on Antarctic earth science, Potsdam, 8–12 September 2003, pp 203–204Google Scholar
  31. Leitchenkov GL, Guseva YB, Gandyukhin VV (2007) Cenozoic environmental changes along the East Antarctic continental margin inferred from regional seismic stratigraphy. In: Cooper AK, Raymond CR et al (eds) Antarctica: a keystone in a Changing World—Online Proceedings of the Tenth International Symposium on Antarctic Earth Science, USGS, August 2007, Open-File Report 2007–1047 (doi: 10.3133/of2007-1047.srp005)
  32. Lowell JD (1990) Structural styles in petroleum exploration. OGSI Publication, Tusla, 487Google Scholar
  33. Ludwig WJ, Nafe JE, Drake CL (1971) Seismic refraction. In: Maxwell AE (ed) New concepts of sea floor evolution, Part 1: Regional observations, Willey-Interscience, pp 53–84Google Scholar
  34. Marks KM, Tikku AA (2001) Cretaceous reconstructions of East Antarctica, Africa and Madagascar. Earth Planet Sci Lett 186:479–495. doi: 10.1016/S0012-821X(01)00262-X CrossRefGoogle Scholar
  35. Martin AK, Hartnady CJH (1986) Plate tectonic development of the South West Indian Ocean: a revised reconstruction of East Antarctica and Africa. J Geophys Res 91:4767–4786. doi: 10.1029/JB091iB05p04767 CrossRefGoogle Scholar
  36. Menzies MA, Klemperer SL, Ebinger CJ, Baker J (2002) Characteristics of volcanic rifted margins. In: Menzies MA, Klemperer SL, Ebinger CJ, Baker J (eds) Volcanic rifted margins, Geological Society of America Special Paper. Boulder, Colorado 362, pp 1–14CrossRefGoogle Scholar
  37. Norton IO (1982) Paleomotion between Africa, South America, and Antarctica, and implications for Antarctic Peninsula. In: Craddock C (ed) Antarctic geoscience, University of Wisconsin, Madison, pp 99–106Google Scholar
  38. Osler JC, Louden KE (1995) Extinct spreading centre in the Labrador Sea: Crustal structure from a two dimensional seismic refraction velocity model. J Geophys Res 100:22661–22278. doi: 10.1029/94JB02890 CrossRefGoogle Scholar
  39. Planke S, Symonds PA, Alvestad E, Skogseid J (2000) Seismic volcanosratigraphy of large-volume basaltic extrusive complexes on rifted margins. J Geophys Res 105(B8):19335–19351. doi: 10.1029/1999JB900005 CrossRefGoogle Scholar
  40. Rao DG, Ramana MV, Sarma KVLNS (1992) Tectonic development of graben over the Astrid Ridge off Dronning Maud Land, Antarctica. In: Yoshida A, Kaminuma K, Shiraishi K (eds) Recent progress in Antarctic Earth Science, Terra Scientific Publishing Company, Tokyo, pp 639–647Google Scholar
  41. Roeser HA, Fritsch J, Hinz K (1996) The development of the crust off Dronning Maud Land, East Antarctica. In: Storey BC, King EC, Livermore RA (eds) Weddell Sea Tectonics and Gondwana Break-up. Geol Soc London Spec Publ, vol 108, pp 243–264Google Scholar
  42. Rolf C, Heinjes-Kunst F (2005) Paleomagnetic and geochronological study of late Pan-African and Mesozoic igneous and metamorphic rocks from central Dronning Maud Land, East Antarctica. In: Paech H-J (ed) International GEOMAUD expedition of the BGR to central Dronning Maud Land in 1995/96, II Geophysical Results. Geol Jb, vol 97(11), pp 7–52Google Scholar
  43. Spaeth G, Schull P (1987) A survey of Mesozoic dolerite dikes from western Neuschwabenland, Antarctica, and their geotectonic significance. Polarforschung 57(1/2):93–113Google Scholar
  44. Saki T, Tamura Y, Tokuhashi S, Kodato T, Mizukoshi I, Amano H (1987) Preliminary report of geological and geophysical surveys off Dronning Maud Land, East Antarctica. In: Proceedings of the Nat Inst Polar Res (NIPR) Symposium. Ant. Geoscience.1, Tokio, pp 23–40Google Scholar
  45. Sandwell DT, Smith WHF (1997) Marine gravity anomaly from Geosat and ERS-1 satellite altimetry. J Geophys Res 102:10039–10054. doi: 10.1029/96JB03223 CrossRefGoogle Scholar
  46. Solli K, Kuvaas B, Kristoffersen Y, Leitchenkov G, Guseva J, Gandjukhin V (2007a) A seismo-stratigraphic analysis of glaciomarine deposits in the eastern Riiser-Larsen Sea (Antarctica). Mar Geophys Res 28:43–57. doi: 10.1007/s11001-007-9013-x CrossRefGoogle Scholar
  47. Solli K, Kuvaas B, Kristoffersen Y, Leitchenkov G, Guseva J, Gandjukhin V (2007b) Seismic morphology and distribution of inferred glaciomarine deposits along the East Antarctic continental margin, 20°E–60°E. Mar Geol 237:207–223. doi: 10.1016/j.margeo.2006.12.002 CrossRefGoogle Scholar
  48. Verhoef J, Maqcnab R, Roest W et al (1996) A compilation of magnetic observations from the Arctic and north Atlantic oceans and the adjacent Land areas. Geological survey of Canada, Open File Reports 3281, 3282, 3283Google Scholar
  49. White R, McKenzie D (1989) Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. J Geophys Res 94:7685–7729. doi: 10.1029/JB094iB06p07685 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • G. Leitchenkov
    • 1
  • J. Guseva
    • 2
  • V. Gandyukhin
    • 2
  • G. Grikurov
    • 1
  • Y. Kristoffersen
    • 3
  • M. Sand
    • 4
  • A. Golynsky
    • 1
  • N. Aleshkova
    • 1
  1. 1.All-Russia Research Institute for Geology and MineralResources of the World Ocean (VNIIOkeangeologia)St. PetersburgRussia
  2. 2.Polar Marine Geosurvey Expedition (PMGE)LomonosovRussia
  3. 3.University of BergenBergenNorway
  4. 4.Norwegian Petroleum Directorate (NPD)StavangerNorway

Personalised recommendations